全概率公式
展开全部
全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。
内容:如果事件B1、B2、B3…Bn 构成一个完备事件组,即它们两两互不相容,其和为全集;并且P(Bi)大于0,则对任一事件A有
P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。p(A)=P(AB1)+P(AB2)+...+P(ABn)),其中A与Bn的关系为交)。
设实验E的样本空间为S,A为E的事件,B1,B2,Bn为S的一个划分,且P(Bi)>0(i=1,2,n),则P(A)=P(A|B1)*P(B1)+P(A|B2)*P(B2)+P(A|Bn)*P(Bn)。上式称为全概率公式。
全概公式:首先建立一个完备事件组的思想,其实全概就是已知第一阶段求第二阶段,比如第一阶段分ABC三种,然后ABC中均有D发生的概率,最后让求D的概率P(D)=P(A)*P(D/A)+P(B)*P(D/B)+P(C)*P(D/C)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
您可能需要的服务
百度律临官方认证律师咨询
平均3分钟响应
|
问题解决率99%
|
24小时在线
立即免费咨询律师
17688人正在获得一对一解答
上海旋风骑士2分钟前提交了问题
广州萤火虫6分钟前提交了问题
济南夏日炎炎4分钟前提交了问题