![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n属于N*,求数列{an}的通项公式
3个回答
展开全部
S(n+1)=2Sn+n+1,故
Sn=2S(n-1)+(n-1)+1,两式相减,得
a(n+1)=2an+1,两边同时加1,得
a(n+1)+1=2(an+1),即
(a(n+1))/(an+1)=2,又a1+1=a+1,故
an+1是以a+1为首项,2为公差的等比数列,故
an+1=(a+1)*2^(n-1),
an=(a+1)*2^(n-1)-1
Sn=2S(n-1)+(n-1)+1,两式相减,得
a(n+1)=2an+1,两边同时加1,得
a(n+1)+1=2(an+1),即
(a(n+1))/(an+1)=2,又a1+1=a+1,故
an+1是以a+1为首项,2为公差的等比数列,故
an+1=(a+1)*2^(n-1),
an=(a+1)*2^(n-1)-1
展开全部
:(Ⅰ)∵a1=1,Sn+1=2Sn+n+1,
∴Sn+1+(n+1)+2=2(Sn+n+2),
并且S1+1+2=1+1+2=4,数列{Sn+n+1}组成一个以4为首项,2为公比的等比数列,
∴Sn+n+1=4×2n-1=2n+1,
Sn=2n+1-n-2.
∴a1=S1=22-1-2=1,
an=Sn-Sn-1
=(2n+1-n-2)-(2n-n-1)=2n-1,
当n=1时,2n-1=1=a1,
∴an=2n-1.
∴Sn+1+(n+1)+2=2(Sn+n+2),
并且S1+1+2=1+1+2=4,数列{Sn+n+1}组成一个以4为首项,2为公比的等比数列,
∴Sn+n+1=4×2n-1=2n+1,
Sn=2n+1-n-2.
∴a1=S1=22-1-2=1,
an=Sn-Sn-1
=(2n+1-n-2)-(2n-n-1)=2n-1,
当n=1时,2n-1=1=a1,
∴an=2n-1.
![](http://iknow-zhidao.bdimg.com/static/question-new/widget/value-comment/img/support_10.6efc748.gif?x-bce-process=image/format,f_auto/quality,q_80)
你对这个回答的评价是?
展开全部
(1)当n=1时,a(n)=a
(2)当n大于等于2:同楼上
(2)当n大于等于2:同楼上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询