已知函数f(x)=x3+ax2+x+1,a属于R ,设函数f(x)在区间(-2\3,-1\3)内是减函数,求a的取值范围 10
3个回答
展开全部
底数0.5<1
所以对数是减函数
f(x)在区间[2,+∞)上是减函数
则x^2-ax+3a在区间[2,+∞)上是增函数
x^2-ax+3a对称轴是x=a/2
所以对称轴不能在x=2右边
所以a/2≤2
a≤4
又要保证真数在[2,正无穷)>0
所以
g(x)=x^2-ax+3a,g(2)>0
4-2a+3a>0
a>-4
综上,
所以对数是减函数
f(x)在区间[2,+∞)上是减函数
则x^2-ax+3a在区间[2,+∞)上是增函数
x^2-ax+3a对称轴是x=a/2
所以对称轴不能在x=2右边
所以a/2≤2
a≤4
又要保证真数在[2,正无穷)>0
所以
g(x)=x^2-ax+3a,g(2)>0
4-2a+3a>0
a>-4
综上,
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询