周期函数有什么奇偶性?
1个回答
展开全部
奇偶性是函数的基本性质之一。
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。
周期函数有以下性质:
1、若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。
2、若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
3、若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
4、T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)
5、若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
6、周期函数f(x)的定义域M必定是双方无界的集合。
深圳圣斯尔电子技术有限公司
2023-06-12 广告
2023-06-12 广告
使用测头套于电缆上,在进行信号处理,输出4-20mA,RS485,无线,供其他检测设备使用。非接触检测方式对被测线路,杜绝了接触测量电压方式可能导致的短路隐患; 具有闭环和开口式两种安装方式,多种外形和安装结构(PCB板、导轨、螺钉);输入...
点击进入详情页
本回答由深圳圣斯尔电子技术有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询