已知定点A(-2,0),动点B是圆F(x-2)²+y²=64上一点,AB的垂直平分线交BF于点P
1)P的轨迹方程2)是否存在过点E(0,-4)的直线L交P点的轨迹于点R.T,且满足OR向量×OT向量=16/7(O为坐标原点)若存在,求直线L,若不存在,说明理由...
1)P的轨迹方程
2)是否存在过点E(0,-4)的直线L交P点的轨迹于点R.T,且满足OR向量 × OT向量=16/7 (O为坐标原点) 若存在,求直线L ,若不存在,说明理由 展开
2)是否存在过点E(0,-4)的直线L交P点的轨迹于点R.T,且满足OR向量 × OT向量=16/7 (O为坐标原点) 若存在,求直线L ,若不存在,说明理由 展开
5个回答
展开全部
1 由线段AB的垂直平分线交BF于P可得
PA=PB
又PB+PF=BF=8
则PA+PF=8
可知动点P是以A F为焦点的椭圆
则 2a=8 c=2
b^2=a^2-c^2=12
故动点P的轨迹方程为x^2/16+y^2/12=1
PA=PB
又PB+PF=BF=8
则PA+PF=8
可知动点P是以A F为焦点的椭圆
则 2a=8 c=2
b^2=a^2-c^2=12
故动点P的轨迹方程为x^2/16+y^2/12=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)由题意|PA|=|PB|,且|PB|+|PF|=8,
∴|PA|+|PF|=8>|AF|.
因此点P的轨迹是以A,F为焦点的椭圆、(4分)
设所求椭圆的方程为x2a2+
y2b2=1(a>b>0),
∴2a=8,a=4,a2-b2=c2=22=4∴b2=12
∴点P的轨迹方程为x216+
y212=1.(6分)
∴|PA|+|PF|=8>|AF|.
因此点P的轨迹是以A,F为焦点的椭圆、(4分)
设所求椭圆的方程为x2a2+
y2b2=1(a>b>0),
∴2a=8,a=4,a2-b2=c2=22=4∴b2=12
∴点P的轨迹方程为x216+
y212=1.(6分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询