2个回答
展开全部
对任意ε>0,存在正数N,满足(5000/3)*(1/N)+66666562000*(1/N)^2+(1414/3)*(1/N)^3=ε,使对所有n>N,有
|(20n^3-5n^2+314n+1.414)/(0.003n^3+30000n)-20000/3|
=|(60n^3-15n^2+942n+4.242-60n^3-600000000n)/(0.009n^3+90000n)|
=|15n^2+599999058n-4.242|/(0.009n^3+90000n)
<(15n^2+599999058n+4.242)/(0.009n^3)
=(15/n+599999058/n^2+4.242/n^3)/0.009
<(15/N+599999058/N^2+4.242/N^3)/0.009
=(15000/N+599999058000/N^2+4242/N^3)/9
=(5000/3)*(1/N)+66666562000*(1/N)^2+(1414/3)*(1/N)^3
=ε
|(20n^3-5n^2+314n+1.414)/(0.003n^3+30000n)-20000/3|
=|(60n^3-15n^2+942n+4.242-60n^3-600000000n)/(0.009n^3+90000n)|
=|15n^2+599999058n-4.242|/(0.009n^3+90000n)
<(15n^2+599999058n+4.242)/(0.009n^3)
=(15/n+599999058/n^2+4.242/n^3)/0.009
<(15/N+599999058/N^2+4.242/N^3)/0.009
=(15000/N+599999058000/N^2+4242/N^3)/9
=(5000/3)*(1/N)+66666562000*(1/N)^2+(1414/3)*(1/N)^3
=ε
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询