设f(x)在[a, b]上连续,在(a, b)内可导,且在(a, b)内f'(x)≠0证明在ab
F(x)=∫ [a-->x] f(t)dt/(x-a)
F'(x)=( f(x)(x-a)-∫ [a-->x] f(t)dt )/(x-a)^2
由积分中值定理,存在ξ∈(a,x),使∫ [a-->x] f(t)dt=f(ξ)(x-a)
则F'(x)=( f(x)(x-a)-f(ξ)(x-a) )/(x-a)^2
=(f(x)-f(ξ))/(x-a)
由x在(a,b)内,x>a,由ξ∈(a,x),则ξ<x,
由于f '(x)<0,则f(x)是减函数,则f(x)<f(ξ)
因此F'(x)=(f(x)-f(ξ))/(x-a),分子为负,分母为正,所以F'(x)<0。
函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。
扩展资料:
如果自变量在某一点处的增量趋于0时,对应函数值的增量也趋于0,就把f(x)称作是在该点处连续的。
在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。
反证法,假设f(x)在[a,b]上无上界,则对任意正数M,都存在一个x'∈[a,b],使f(x')>M。
特别地,对于任意正整数n,都存在一个xn∈[a,b],使f(xn)>n。
参考资料来源:百度百科——连续函数
F'(x)=( f(x)(x-a)-∫ [a-->x] f(t)dt )/(x-a)^2
由积分中值定理,存在ξ∈(a,x),使∫ [a-->x] f(t)dt=f(ξ)(x-a)
则F'(x)=( f(x)(x-a)-f(ξ)(x-a) )/(x-a)^2
=(f(x)-f(ξ))/(x-a)
由x在(a,b)内,x>a,由ξ∈(a,x),则ξ<x,
由于f '(x)<0,则f(x)是减函数,则f(x)<f(ξ)
因此F'(x)=(f(x)-f(ξ))/(x-a),分子为负,分母为正,所以F'(x)<0。
F(x)=∫[a-->x]f(t)dt/(x-a)
F'(x)=(f(x)(x-a)-∫[a-->x]f(t)dt)/(x-a)^2
由积分中值定理,存在ξ∈(a,x),使∫[a-->x]f(t)dt=f(ξ)(x-a)
则F'(x)=(f(x)(x-a)-f(ξ)(x-a))/(x-a)^2
=(f(x)-f(ξ))/(x-a)
由x在(a,b)内,x>a,由ξ∈(a,x),则ξ<x,
由于f'(x)<0,则f(x)是减函数,则f(x)<f(ξ)
因此F'(x)=(f(x)-f(ξ))/(x-a),分子为负,分母为正,所以F'(x)<0。
函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。
扩展资料:
如果自变量在某一点处的增量趋于0时,对应函数值的增量也趋于0,就把f(x)称作是在该点处连续的。
在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。
反证法,假设f(x)在[a,b]上无上界,则对任意正数M,都存在一个x'∈[a,b],使f(x')>M。
特别地,对于任意正整数n,都存在一个xn∈[a,b],使f(xn)>n。
参考资料来源:/baike.baidu.com/item/%E8%BF%9E%E7%BB%AD%E5%87%BD%E6%95%B0/2716812?fr=aladdin"target="_blank"title="百度百科——连续函数">百度百科——连续函数
福利手游APP(下载搜0.1)
手游充值0.1折
¥免费分享
手游代理加盟限时特惠!
推广手游拿分成
¥79元
手游加盟代理自助注册页面
入行手游项目必看教程
¥198
新自由之刃(百人同屏)
满攻速魂环版传奇
¥1.76复古
绝世仙王之八荒寻仙录
超高人气仙侠手游
¥无折扣返利
自由之刃2(新)
冰龙魂环复古经典
¥新版复古传奇
查
看
更
多
- 官方电话
- 在线客服
-
官方服务
- 官方网站
- 福利app
- 代理申请