已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为A(2,0)

已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为A(2,0),离心率为2分之根号2。直线y=k(x-1)与椭圆C交于不同的两点M,N。(1)求椭圆... 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为A(2,0),离心率为2分之根号2。直线y=k(x-1)与椭圆C交于不同的两点M,N。 (1)求椭圆C的方程 (2)当三角形AMN的面积为3分之根号10时,求k的值 展开
 我来答
位浩伟霞绮
2020-08-01 · TA获得超过1023个赞
知道小有建树答主
回答量:1394
采纳率:100%
帮助的人:6.3万
展开全部
|由A(2,0)可得:a=2,
离心率
e=c/a=c/2=√2/2,
∴c=√2,
b=√(a^2-c^2)=√2,
∴椭圆方程为:x^2/4
+y^2/2=1,
设M(x1,y1),N(x2,
y2
)
联立直线椭圆,得:
(1+2k²)x²
-
4k²x+2k²-4=0
x1+x2=4k²/(1+2k²),x1x2=(2k²-4)/(1+2k²)
|MN|=√[(x1-x2)²+(y1-y2)²]
=√{
(x1-x2)²
+
[k(x1-1)
-
k(x2-1)]²
}
=√[(x1-x2)²
+
k²(x1-x2)²]
=√[(1+k²)(x1-x2)²]
=√{
(1+k²)[(x1+x2)²
-
4x1x2]
=√{
(1+k²)[16k^4/(1+2k²)²
-
4(2k²-4)/(1+2k²)
]
}
=√[(1+k²)(
24k
²+16)/(1+2k²)²
]
A
点到直线距离

h=|k|/√(1+k²)
∴S=(1/2)·h·|MN|
=(1/2)·[|k|/√(1+k²)]
·√[(1+k²)(24k²+16)/(1+2k²)²
]
=(1/2)·|k|·√[(24k²+16)/(1+2k²)²]
=√10/3
即:|k|·√[(24k²+16)/(1+2k²)²]
=
2√10/3
两边平方,得:(24k^4
+
16k²)/(1+2k²)²
=
40/9
即:7k^4
-
2k²
-
5=0
解得:k²=1或-5/7
(舍去)
∴k²=1
∴k=±1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式