谁能告诉我高一数学抽象函数以及函数奇偶性与单调性的解法?
展开全部
(1)如果对于函数f( x )定义域内任意一个x,
都有f(- x)=f( x),那么函数f(x)就叫做偶函数.
(2)如果对于函数f( x)定义域内任意一个x,
都有f(- x)= -f( x),那么函数f(x)就叫做奇函数
(1)奇函数的图象关于原点对称,
反过来,如果一个函数的图象关于原点对称,
那么这个函数是奇函数.
(2)偶函数的图象关于y轴对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
(1)定义法:
首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,再判定f (-x ) = f( x )或 f( -x ) = -f( x ).有时判定
f( -x )= ± f( x )比较困难,可考虑判定 f(-x) ± f(x)=0或判定f(x)/f(-x)=±1 .
①在定义域的公共部分内.两奇函数之积(商)为偶函数;两偶函数之积(商)也为偶函数;一奇一偶函数之积(商)为奇函数(注意取商时分母不为零);
②偶函数在区间(a,b)上递增(减),则在区间(-b,-a)上递减(增);奇函数在区间(a,b)与(-b,-a)上的增减性相同.
单调性 我们以前都用导数做的.
都有f(- x)=f( x),那么函数f(x)就叫做偶函数.
(2)如果对于函数f( x)定义域内任意一个x,
都有f(- x)= -f( x),那么函数f(x)就叫做奇函数
(1)奇函数的图象关于原点对称,
反过来,如果一个函数的图象关于原点对称,
那么这个函数是奇函数.
(2)偶函数的图象关于y轴对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
(1)定义法:
首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,再判定f (-x ) = f( x )或 f( -x ) = -f( x ).有时判定
f( -x )= ± f( x )比较困难,可考虑判定 f(-x) ± f(x)=0或判定f(x)/f(-x)=±1 .
①在定义域的公共部分内.两奇函数之积(商)为偶函数;两偶函数之积(商)也为偶函数;一奇一偶函数之积(商)为奇函数(注意取商时分母不为零);
②偶函数在区间(a,b)上递增(减),则在区间(-b,-a)上递减(增);奇函数在区间(a,b)与(-b,-a)上的增减性相同.
单调性 我们以前都用导数做的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询