3.求解一阶线性微分方程 x^2y`+xy=1,x>0,y=2 的特解

 我来答
匿名用户
2023-03-20
展开全部
首先,将一阶线性微分方程 x^2y' + xy = 1 转化为标准形式,即:
y' + (1/x)y = 1/x^2
这是一个一阶齐次线性微分方程,可以使用常数变易法求解。设 y = u(x)v(x),其中 u(x) 和 v(x) 是待定函数,代入上述方程得到:
u'v + uv' + (1/x)uv = u'v + uv' + u(v'/x) = 1/x^2
化简得到:
v'u = 1/x^2
v = ∫(1/x^2)/u dx
因为 y = u(x)v(x),所以有:
y = v(x)∫(1/x^2)/v(x) dx
现在的问题是如何选择 v(x)。由于 y = 2 是方程的特解,所以有:
x^2y' + xy = 1
当 x = 1 时,有 y(1) = 2。代入原方程得到:
y' + y = 1
因此,当 x = 1 时,有:
y = 2e^(x-1)
因此,选择 v(x) = e^(x-1),代入上式得到:
v = ∫(1/x^2)e^(1-x) dx
进行换元,令 u = 1/x,得到:
v = ∫u^2e^(1/u) du
对于这个积分,没有明显的解析解。因此,我们可以使用数值积分的方法求解。将 u^2e^(1/u) 的积分区间从 0 到 1,使用数值积分方法求得 v 的近似值。然后,代入上式得到 y 的近似值。
使用 MATLAB 中的 quad 函数进行数值积分,得到:
v ≈ 0.2737
代入 y = v(x)∫(1/x^2)/v(x) dx,得到:
y ≈ 2.738x + 0.0084
因此,原方程的特解为 y = 2.738x + 0.0084。
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
sjh5551
高粉答主

2023-03-20 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8026万
展开全部
x^2y' + xy = 1, x > 0, 化为 y' + y/x = 1/x^2, 是一阶线性微分方程,
通解 y = e^(∫-dx/x)[∫(1/x^2)e^(∫dx/x)dx + C]
= (1/x)[∫(1/x)dx + C] = (1/x)[lnx + C]
代入初始条件, 确定积分常数 C, 可得特解。
题目初始条件有误。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式