怎样用导数求函数的极限

 我来答
1123456热热热
2023-07-13 · TA获得超过323个赞
知道大有可为答主
回答量:3368
采纳率:100%
帮助的人:46.7万
展开全部

求极限的方法有以下几种:

1、代入法:将变量代入函数中,得到一个数值,即为该点的函数值。

2、夹逼定理:通过夹逼定理找到一个上下界,并让上下界无限逼近目标点,从而得到极限值。

3、极限的四则运算法则:利用函数极限的四则运算法则求出极限值。

4、洛必达法则:将极限转化成两个函数的导数的极限,再进行计算。

5、泰勒公式:利用泰勒公式展开函数,近似表示为一个多项式,从而求得其极限。

6、牛顿-莱布尼茨公式:利用牛顿-莱布尼茨公式计算函数在某一点的极限值。

7、奇偶性、周期性分析法:通过奇偶性、周期性等特征,判断函数在某一点是否存在极限。

函数极限存在的条件

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

函数极限存在的条件有以下两个:

1、函数趋于目标值:即当自变量趋于某一数值时,函数的取值趋近于某一固定的数值。

2、趋近方式唯一性:即函数在自变量趋近目标值的过程中,无论从哪个方向靠近,最终都将收敛到同一个值,否则该函数极限不存在。



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式