如图,已知直线Y=-1/2X与抛物线Y=-1/4X2+6交于点A、B两点1、求A、B坐标2、求AB垂直平分线的解析式
P在AB上方的抛物线上移动、动点P与AB构成无数的三角形这些三角形中是否存在面积最大的一个三角形如果存在求出最大面积...
P在AB上方的抛物线上移动、动点P与AB构成无数的三角形这些三角形中是否存在面积最大的一个三角形如果存在求出最大面积
展开
1个回答
展开全部
1、y=(-1/2)x……(1)
y=(-1/4)x²+6……(2)
将(1)代入(2)中得:
(-1/2)x=(-1/4)x²+6
整理:x²-2x-6=0
解:x=6或-4 y=-3或2
所以A(6,-3)、B(-4,2)
2、AB的中点((6-4)/2,(-3-2)/2)即(1,-5/2)
AB垂直平分线的斜率k=2
所以解析式设y=kx+b,将中点代入:-5/2=2+b b=-9/2
所以AB垂直平分线的解析式:y=2x-(9/2)
3、AB=√[(6+4)²+(-3-2)²]=√125=5√5
设P(a,(-1/4)a²+6),则P到直线y=(-1/2)x,即x+2y=0 的距离
PD=|a+2×[(-1/4)a²+6]|/√(1+2²)
= |a-(1/2)a²+12|/√5
所以S△ABP=AB×PD÷2
=5√5×[ |a-(1/2)a²+12|/√5]÷2
=5/2×[ |a-(1/2)a²+12|]
讨论:1)a-(1/2)a²+12>0
得S△ABP=5/2×[ a-(1/2)a²+12]
=-5/4(a²-2a-24)
=-5/4(a-1)²+125/4
当a-1=0时即P(1,23/4)在AB的上方, △ABP 面积最大=125/4
2)1)a-(1/2)a²+12<0时,P点在AB下方,不做讨论。
所以P点在AB上方△ABP 面积最大=125/4。
y=(-1/4)x²+6……(2)
将(1)代入(2)中得:
(-1/2)x=(-1/4)x²+6
整理:x²-2x-6=0
解:x=6或-4 y=-3或2
所以A(6,-3)、B(-4,2)
2、AB的中点((6-4)/2,(-3-2)/2)即(1,-5/2)
AB垂直平分线的斜率k=2
所以解析式设y=kx+b,将中点代入:-5/2=2+b b=-9/2
所以AB垂直平分线的解析式:y=2x-(9/2)
3、AB=√[(6+4)²+(-3-2)²]=√125=5√5
设P(a,(-1/4)a²+6),则P到直线y=(-1/2)x,即x+2y=0 的距离
PD=|a+2×[(-1/4)a²+6]|/√(1+2²)
= |a-(1/2)a²+12|/√5
所以S△ABP=AB×PD÷2
=5√5×[ |a-(1/2)a²+12|/√5]÷2
=5/2×[ |a-(1/2)a²+12|]
讨论:1)a-(1/2)a²+12>0
得S△ABP=5/2×[ a-(1/2)a²+12]
=-5/4(a²-2a-24)
=-5/4(a-1)²+125/4
当a-1=0时即P(1,23/4)在AB的上方, △ABP 面积最大=125/4
2)1)a-(1/2)a²+12<0时,P点在AB下方,不做讨论。
所以P点在AB上方△ABP 面积最大=125/4。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询