关于函数有界性的问题.
展开全部
函数的有界性定义: 如果对于变量x所考虑的范围(用D表示)内,存在一个正数M,使在D上的函数值f(x)都满足 │f(x)│≤M 则称函数y=f(x)在D上有界,亦称f(x)在D上是有界函数.如果不存在这样的正数M,则称函数y=f(x)在D上无界,亦称f(x)在D上是无界函数.
举例: 一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
举例: 一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询