f(x)=2sin(wx+∮)(w>0)的图像关于直线x=派/3对称,且派/12为函数f(x)的一个零点,这w的最小值为
2个回答
展开全部
f(x)=2sin(ωx+φ)(ω>0)的图像关于直线x=π/3对称,且π/12为函数f(x)的一个零点,求ω的最小值
解:f(x)=2sin(ωx+φ)的最小正周期T= 2π/ω,要求ω的最小值就是要求T的最大值;由于f(x)的图
像关于直线x=π/3对称,故f(π/3)=±2;又由于π/12为函数f(x)的一个零点,故f(π/12)=0;那么T
的最大值可由T/4=π/3-π/12=π/4求得,即Tmax=π,也就是ωmin=2;故f(x)=2sin(2x+φ);
再由f(π/12)=2sin(π/6+φ)=0,得π/6+φ=0,故φ=-π/6;于是得f(x)=2sin(2x-π/6) 。
解:f(x)=2sin(ωx+φ)的最小正周期T= 2π/ω,要求ω的最小值就是要求T的最大值;由于f(x)的图
像关于直线x=π/3对称,故f(π/3)=±2;又由于π/12为函数f(x)的一个零点,故f(π/12)=0;那么T
的最大值可由T/4=π/3-π/12=π/4求得,即Tmax=π,也就是ωmin=2;故f(x)=2sin(2x+φ);
再由f(π/12)=2sin(π/6+φ)=0,得π/6+φ=0,故φ=-π/6;于是得f(x)=2sin(2x-π/6) 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询