如图,OA⊥OC,OB⊥OD,且∠AoD=3∠BOC,求∠BOC的度数
7个回答
威孚半导体技术
2024-08-19 广告
2024-08-19 广告
威孚(苏州)半导体技术有限公司是一家专注生产、研发、销售晶圆传输设备整机模块(EFEM/SORTER)及核心零部件的高科技半导体公司。公司核心团队均拥有多年半导体行业从业经验,其中技术团队成员博士、硕士学历占比80%以上,依托丰富的软件底层...
点击进入详情页
本回答由威孚半导体技术提供
展开全部
由已知OA⊥OC,OB⊥OD,得∠BOD+∠AOC=180°,再利用角的和差关系将等式变形,得到∠AOD与∠BOC的一个等量关系,与已知∠AOD=3∠BOC联立,可求∠BOC.
解:∵OA⊥OC,OB⊥OD,
∴∠BOD=90°,∠AOC=90°,
∴∠BOD+∠AOC=180°,
即∠COD+∠BOC+∠AOB+∠BOC=180°,
∴∠AOD+∠BOC=180°,①
又∵∠AOD=3∠BOC,②
解①、②得∠BOC=45°.
解:∵OA⊥OC,OB⊥OD,
∴∠BOD=90°,∠AOC=90°,
∴∠BOD+∠AOC=180°,
即∠COD+∠BOC+∠AOB+∠BOC=180°,
∴∠AOD+∠BOC=180°,①
又∵∠AOD=3∠BOC,②
解①、②得∠BOC=45°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由已知OA⊥OC,OB⊥OD,得∠BOD+∠AOC=180°,再利用角的和差关系将等式变形,得到∠AOD与∠BOC的一个等量关系,与已知∠AOD=3∠BOC联立,可求∠BOC.
解:∵OA⊥OC,OB⊥OD,
∴∠BOD=90°,∠AOC=90°,
∴∠BOD+∠AOC=180°,
即∠COD+∠BOC+∠AOB+∠BOC=180°,
∴∠AOD+∠BOC=180°,①
又∵∠AOD=3∠BOC,②
解①、②得∠BOC=45°.
解:∵OA⊥OC,OB⊥OD,
∴∠BOD=90°,∠AOC=90°,
∴∠BOD+∠AOC=180°,
即∠COD+∠BOC+∠AOB+∠BOC=180°,
∴∠AOD+∠BOC=180°,①
又∵∠AOD=3∠BOC,②
解①、②得∠BOC=45°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由已知OA⊥OC,OB⊥OD,得∠BOD+∠AOC=180°,再利用角的和差关系将等式变形,得到∠AOD与∠BOC的一个等量关系,与已知∠AOD=3∠BOC联立,可求∠BOC.
解:∵OA⊥OC,OB⊥OD,
∴∠BOD=90°,∠AOC=90°,
∴∠BOD+∠AOC=180°,
即∠COD+∠BOC+∠AOB+∠BOC=180°,
∴∠AOD+∠BOC=180°,①
又∵∠AOD=3∠BOC,②
解①、②得∠BOC=45°.
解:∵OA⊥OC,OB⊥OD,
∴∠BOD=90°,∠AOC=90°,
∴∠BOD+∠AOC=180°,
即∠COD+∠BOC+∠AOB+∠BOC=180°,
∴∠AOD+∠BOC=180°,①
又∵∠AOD=3∠BOC,②
解①、②得∠BOC=45°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:由已知得∠AOD=3∠BOC
∠DOC=∠COB=∠BOA
∠AOC=90°
∴∠BOC=1/2∠AOC=∠aoc
∴∠BOC=90÷2=45°
∠DOC=∠COB=∠BOA
∠AOC=90°
∴∠BOC=1/2∠AOC=∠aoc
∴∠BOC=90÷2=45°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢???
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询