如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF。
(1)AE与FC会平行吗?说明理由。(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么。...
(1)AE与FC会平行吗?说明理由。
(2)AD与BC的位置关系如何?为什么?
(3)BC平分∠DBE吗?为什么。 展开
(2)AD与BC的位置关系如何?为什么?
(3)BC平分∠DBE吗?为什么。 展开
展开全部
(1)因为:∠1+∠2=180 且∠1+∠DBE=180
所以:∠2=∠DBE
所以:AE‖FC(同位角相等两直线平行)
(2)AD‖BC
因为:AE‖FC
所以:∠C+∠ABC=180
又因为:∠C=∠A
所以:∠A+∠ABC=180
所以:AD‖BC
(3)∠1+∠2=180° ∠2+∠CDB=180° ∠1=∠CDB
∠1=∠DBA (对角相等) ∠CDB=∠DBA
说明 四边形ABCD是平行四边形
∠ADB=∠DBC(平行四边形定理) ∠DAE=∠CBE(平行四边形定理)
∠FDA=∠BCF(平行四边形定理) ∠DAE=∠BCF(以知)
所以 ∠FDA=∠CBE
又因为DA平分∠BDF 而 ∠ADB=∠DBC ∠FDA=∠CBE
所以 BC平分∠DBE
所以:∠2=∠DBE
所以:AE‖FC(同位角相等两直线平行)
(2)AD‖BC
因为:AE‖FC
所以:∠C+∠ABC=180
又因为:∠C=∠A
所以:∠A+∠ABC=180
所以:AD‖BC
(3)∠1+∠2=180° ∠2+∠CDB=180° ∠1=∠CDB
∠1=∠DBA (对角相等) ∠CDB=∠DBA
说明 四边形ABCD是平行四边形
∠ADB=∠DBC(平行四边形定理) ∠DAE=∠CBE(平行四边形定理)
∠FDA=∠BCF(平行四边形定理) ∠DAE=∠BCF(以知)
所以 ∠FDA=∠CBE
又因为DA平分∠BDF 而 ∠ADB=∠DBC ∠FDA=∠CBE
所以 BC平分∠DBE
展开全部
(1)因为:∠1+∠2=180 且∠1+∠DBE=180
所以:∠2=∠DBE
所以:AE‖FC(同位角相等两直线平行)
(2)AD‖BC
因为:AE‖FC
所以:∠C+∠ABC=180
又因为:∠C=∠A
所以:∠A+∠ABC=180
所以:AD‖BC
(3)∠1+∠2=180° ∠2+∠CDB=180° ∠1=∠CDB
∠1=∠DBA (对角相等) ∠CDB=∠DBA
说明 四边形ABCD是平行四边形
∠ADB=∠DBC(平行四边形定理) ∠DAE=∠CBE(平行四边形定理)
∠FDA=∠BCF(平行四边形定理) ∠DAE=∠BCF(以知)
所以 ∠FDA=∠CBE
又因为DA平分∠BDF 而 ∠ADB=∠DBC ∠FDA=∠CBE
所以 BC平分∠DBE
所以:∠2=∠DBE
所以:AE‖FC(同位角相等两直线平行)
(2)AD‖BC
因为:AE‖FC
所以:∠C+∠ABC=180
又因为:∠C=∠A
所以:∠A+∠ABC=180
所以:AD‖BC
(3)∠1+∠2=180° ∠2+∠CDB=180° ∠1=∠CDB
∠1=∠DBA (对角相等) ∠CDB=∠DBA
说明 四边形ABCD是平行四边形
∠ADB=∠DBC(平行四边形定理) ∠DAE=∠CBE(平行四边形定理)
∠FDA=∠BCF(平行四边形定理) ∠DAE=∠BCF(以知)
所以 ∠FDA=∠CBE
又因为DA平分∠BDF 而 ∠ADB=∠DBC ∠FDA=∠CBE
所以 BC平分∠DBE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)平行,
证明:∵∠2+∠CDB=180°,∠1+∠2=180°,
∴∠CDB=∠1,
∴AE∥FC.
(2)平行,
证明:∵AE∥FC,
∴∠CDA+∠DAE=180°,
又∵∠DAE=∠BCF,
∴∠BCF+∠CDA=180°,
∴AD∥BC.
(3)平分,
证明:∵AE∥FC,
∴∠EBC=∠BCF,
∵AD∥BC,
∴∠BCF=∠FDA,∠DBC=∠BAD,
又∵DA平分∠BDF,即∠FDA=∠BDA,
∴∠EBC=∠DBC,
∴BC平分∠DBE.
证明:∵∠2+∠CDB=180°,∠1+∠2=180°,
∴∠CDB=∠1,
∴AE∥FC.
(2)平行,
证明:∵AE∥FC,
∴∠CDA+∠DAE=180°,
又∵∠DAE=∠BCF,
∴∠BCF+∠CDA=180°,
∴AD∥BC.
(3)平分,
证明:∵AE∥FC,
∴∠EBC=∠BCF,
∵AD∥BC,
∴∠BCF=∠FDA,∠DBC=∠BAD,
又∵DA平分∠BDF,即∠FDA=∠BDA,
∴∠EBC=∠DBC,
∴BC平分∠DBE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询