已知数列{an},{bn},{an}为公比q>0的等比数列,Sn,Tn分别为{an},{bn}的前n项和

且S4=20,S8=340,b1=1,bn=3/4nSn,求Tn... 且S4=20,S8=340,b1=1,bn=3/4nSn,求Tn 展开
xuzhouliuying
高粉答主

2012-02-28 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
S8/S4=[a1(q^8-1)/(q-1)]/[a1(q^4-1)/(q-1)]
=[a1(q^4+1)(q^4-1)/(q-1)]/[a1(q^4-1)/(q-1)]
=q^4+1=340/20=17
q^4=16
q>0 q=2
S4=a1(q^4-1)/(q-1)=a1(16-1)/(2-1)=15a1=20
a1=4/3
Sn=a1(q^n-1)/(q-1)=(4/3)(2^n-1)/(2-1)=(4/3)(2^n-1)
bn=(3/4)nSn=(3/4)(4/3)n(2^n-1)=n(2^n-1)
Tn=b1+b2+...+bn
=1×(2^1-1)+2×(2^2-1)+...+n(2^n-1)
=(1×2^1+2×2^2+...+n×2^n)-(1+2+...+n)
令Cn=1×2^1+2×2^2+...+n×2^n
则2Cn=1×2^2+2×2^3+...+(n-1)×2^n+n×2^(n+1)
Cn-2Cn=-Cn=2^1+2^2+...+2^n-n×2^(n+1)
=2(2^n-1)/(2-1)-n×2^(n+1)
=(1-n)×2^(n+1)-2
Cn=(n-1)×2^(n+1)+2
Tn=(1×2^1+2×2^2+...+n×2^n)-(1+2+...+n)
=(n-1)×2^(n+1)+2-n(n+1)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式