已知:如图,三角形ABC中,外角∠DBC与∠ECB的角平分线相交于点O,(1)∠A为64°,求∠BOC的度数
1个回答
展开全部
解:
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵∠CBE=180-∠ABC,BO平分∠DBC
∴∠CBO=∠DBC/2=(180-∠ABC)/2=90-∠ABC/2
∵∠ECB=180-∠ACB,CO平分∠ECB
∴∠BCO=∠ECB/2=(180-∠ACB)/2=90-∠ABC/2
∴∠BOC=180-(∠CBO+∠BCO)
=180-(90-∠ABC/2+90-∠ACB/2)
=∠ABC/2+∠ACB/2
=(∠ABC+∠ACB)/2
=(180-∠A)/2
=90-∠A/2
∴1)
∠A=64, ∠BOC=90-64/2=58
2)
∠A=X, ∠BOC=90-X/2
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵∠CBE=180-∠ABC,BO平分∠DBC
∴∠CBO=∠DBC/2=(180-∠ABC)/2=90-∠ABC/2
∵∠ECB=180-∠ACB,CO平分∠ECB
∴∠BCO=∠ECB/2=(180-∠ACB)/2=90-∠ABC/2
∴∠BOC=180-(∠CBO+∠BCO)
=180-(90-∠ABC/2+90-∠ACB/2)
=∠ABC/2+∠ACB/2
=(∠ABC+∠ACB)/2
=(180-∠A)/2
=90-∠A/2
∴1)
∠A=64, ∠BOC=90-64/2=58
2)
∠A=X, ∠BOC=90-X/2
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询