已知向量a=(1/2,√3/2),b=(cosx,sinx).若a·b=2cos[(12kπ+13π)/6+x](k∈Z),求tan(x+5π/12)的值
2个回答
展开全部
∵向量a=(1/2,√3/2),向量b=(cosx,sinx),
∴向量a·向量b=(1/2)cosx+(√3/2)sinx=2cos[(12kπ+13π)/6+x],
∴sin(π/6)cosx+cos(π/6)sinx=2cos(2kπ+2π+x+π/6)=2cos(x+π/6),
∴sin(x+π/6)=2cos(x+π/6),
∴tan(x+π/6)=1/2。
∴tan(x+5π/12)
=tan[(x+2π/12)+3π/12]
=tan[(x+π/6)+π/4]
=[tan(x+π/6)+tan(π/4)]/[1-tan(x+π/6)tan(π/4)]
=(1/2+1)/[1-(1/2)×1]
=3
∴向量a·向量b=(1/2)cosx+(√3/2)sinx=2cos[(12kπ+13π)/6+x],
∴sin(π/6)cosx+cos(π/6)sinx=2cos(2kπ+2π+x+π/6)=2cos(x+π/6),
∴sin(x+π/6)=2cos(x+π/6),
∴tan(x+π/6)=1/2。
∴tan(x+5π/12)
=tan[(x+2π/12)+3π/12]
=tan[(x+π/6)+π/4]
=[tan(x+π/6)+tan(π/4)]/[1-tan(x+π/6)tan(π/4)]
=(1/2+1)/[1-(1/2)×1]
=3
展开全部
a•b=2cos[(12kπ+13π)/6+x]
=2cos[(2kπ+2π+π/6+x]
=2cos(π/6+x).
把向量变成:a=(sinπ/6,cosπ/6),
a•b= sinπ/6 cosx+cosπ/6 sinx
= sin(x+π/6)
所以2cos(π/6+x) = sin(x+π/6),
∴tan(π/6+x) = sin(x+π/6) /cos(π/6+x)=2.
tan(x+5π/12)=tan[(π/6+x)+ π/4]
= [tan(π/6+x)+ tanπ/4]/[1- tan(π/6+x)* tanπ/4]
=(2+1)/(1-2*1)
=-3.
=2cos[(2kπ+2π+π/6+x]
=2cos(π/6+x).
把向量变成:a=(sinπ/6,cosπ/6),
a•b= sinπ/6 cosx+cosπ/6 sinx
= sin(x+π/6)
所以2cos(π/6+x) = sin(x+π/6),
∴tan(π/6+x) = sin(x+π/6) /cos(π/6+x)=2.
tan(x+5π/12)=tan[(π/6+x)+ π/4]
= [tan(π/6+x)+ tanπ/4]/[1- tan(π/6+x)* tanπ/4]
=(2+1)/(1-2*1)
=-3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询