2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直

2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形A... 2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式.
(3)当M点运动到什么位置时Rt△ABC∽Rt△AMN,求此时x的值
展开
hate烦恼
2012-03-07 · TA获得超过4840个赞
知道小有建树答主
回答量:781
采纳率:100%
帮助的人:435万
展开全部
正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
如图
因为四边形ABCD为正方形
所以,∠BAM+∠AMB=90°
又,AM⊥MN
所以,∠AMN=90°
所以,∠AMB+∠CMN=90°
所以,∠BAM=∠CMN
而,∠B=∠C=90°
所以,Rt△ABM∽Rt△MCN

(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;
已知正方形ABCD的边长为4,BM=x
所以,CM=4-x
由(1)的结论知:Rt△ABM∽Rt△MCN
所以:AB/MC=BM/CN
即:4/(4-x)=x/CN
所以,CN=(4-x)x/4
而,直角梯形ABCN的面积S=(1/2)*(CN+AB)*BC
=(1/2)*[(4-x)x/4+4]*4=2*[(4-x)x/4+4]
=(1/2)x(4-x)+8=(-1/2)x^2+2x+8
因为点M在BC上,所以:0<x<4
即:Sabcn=(-1/2)x^2+2x+8(0<x<4)
=(-1/2)(x^2-4x+4)+10
=(-1/2)(x-2)^2+10
所以,当x=2时,Sabcn有最大值10
此时点M为BC中点

(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值
要保证Rt△ABM∽Rt△AMN,其中∠ABM=∠AMN=90°
所以,∠BAM=∠MAN
【不可能满足∠BMA=∠MAN——因为∠BMA=∠MAD>∠MAN】
所以:AB/AM=BM/MN……………………………………………(1)
在Rt△ABM中,由勾股定理得到:AM=√(16+x^2)
由(1)的过程知,CN=x(4-x)/4
所以,在Rt△MCN中由勾股定理得到:
MN=√{(4-x)^2+[x(4-x)/4]^2}=√{(4-x)^2+[x^2(4-x)^2/16]}
=√[(4-x)^2*(x^2+16)]/16
=[(4-x)/4]*√(x^2+16)
代入(1)中有:4/√(16+x^2)=x/[(4-x)/4]*√(x^2+16)
所以:x/(4-x)=1
解得:x=2

参考资料: http://iask.sina.com.cn/b/16002311.html

a1377051
2012-03-04 · TA获得超过8.9万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:8465万
展开全部
(1)Rt△ABM∽Rt△MCN﹙AAA﹚;
(2)CN=x﹙4-x﹚/4 y=[4+x﹙4-x﹚/4]×4/2=8+2x-x²/2
(3)x=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
廀發
2013-12-16 · TA获得超过814个赞
知道小有建树答主
回答量:583
采纳率:0%
帮助的人:228万
展开全部
正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
如图
因为四边形ABCD为正方形
所以,∠BAM+∠AMB=90°
又,AM⊥MN
所以,∠AMN=90°
所以,∠AMB+∠CMN=90°
所以,∠BAM=∠CMN
而,∠B=∠C=90°
所以,Rt△ABM∽Rt△MCN
(2).
因为△ABM∽△MCN
所以AB/MC=BM/CN
所以4/(4-x)=x/CN
所以CN=(-x^2)/4+x
所以y=1/2*(AB+CN)*BC
=1/2*[4+(-x^2)/4+x]*4
=(-x^2)/2+2x+8
=-1/2(x-2)^2+10
当x=2时,即BC的中点
四边形ABCN面积最大,最大面积=10
(3).
因为Rt△ABM∽Rt△AMN,其中∠ABM=∠AMN=90°
所以,∠BAM=∠MAN
所以:AB/AM=BM/MN

在Rt△ABM中,由勾股定理得到:AM=√(16+x^2)
由(1)的过程知,CN=x(4-x)/4
所以,在Rt△MCN中由勾股定理得到:
MN=√{(4-x)^2+[x(4-x)/4]^2}=√{(4-x)^2+[x^2(4-x)^2/16]}
=√[(4-x)^2*(x^2+16)]/16
=[(4-x)/4]*√(x^2+16)
代入(1)中有:4/√(16+x^2)=x/[(4-x)/4]*√(x^2+16)
所以:x/(4-x)=1
解得:x=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
afgucizu3
2012-03-08
知道答主
回答量:12
采纳率:0%
帮助的人:4.6万
展开全部
2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直v
xxx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
傲娇御姐大神
2012-03-07
知道答主
回答量:20
采纳率:0%
帮助的人:3.2万
展开全部
。。。。。。。。登错号了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
勇往知前
2012-05-07
知道答主
回答量:38
采纳率:0%
帮助的人:5.9万
展开全部
x=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式