如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D. (1)求证:AC平分∠BAD;
如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=1,AC=,求⊙O的半径长....
如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D. (1)求证:AC平分∠BAD;(2)若CD=1,AC= ,求⊙O的半径长.
展开
傷靓哒9530
推荐于2016-12-01
·
超过65用户采纳过TA的回答
知道答主
回答量:128
采纳率:0%
帮助的人:62.4万
关注
(1)见解析;(2) . |
试题分析:(1)连接OC,由OA=OC得∠ACO=∠CAO,由切线的性质得出OC⊥CD,根据垂直于同一直线的两直线平行得到AD∥CO,由平行线的性质得∠DAC=∠ACO,等量代换后可得∠DAC=∠CAO,即AC平分∠BAD. 过点O作OE⊥AC于E.先在Rt△ADC中,由勾股定理求出AD=3,由垂径定理求出AE= ,再根据两角对应相等的两三角形相似证明△AEO∽△ADC,由相似三角形对应边成比例得到 ,求出AO= ,即⊙O的半径为 . 试题解析:(1)证明:如图,连接OC, ∵OA=OC,∴∠ACO=∠CAO. ∵CD切⊙O于C,∴OC⊥CD. 又∵AD⊥CD,∴AD∥CO. ∴∠DAC=∠ACO. ∴∠DAC=∠CAO,即AC平分∠BAD. (2)如图,过点O作OE⊥AC于E. 在Rt△ADC中, , ∵OE⊥AC,∴AE= AC= . ∵∠CAO=∠DAC,∠AEO=∠ADC=90°, ∴△AEO∽△ADC. ∴ ,即 , ∴AO= ,即⊙O的半径为 . |
收起
为你推荐: