什么叫函数的保号性?
3个回答
展开全部
举个例子吧:
设函数为 f(x),若其在x0处有极限,且有f(x0)>0, 那么根据定义,对任意的ε>0,存在δ>0, 满足 |f(x)-f(x0)|<ε, 即有 f(x0)-ε<f(x)<f(x0)+ε. 当取 ε=f(x0),则上式变为 0=f(x0)-f(x0)<f(x),在(x0-δ,x0+δ)上成立。 即找到一个区间上,f(x)大于零。 我们称此为局部保号性(号为函数值的正负号):即若其在x0处有极限,有f(x0)>0,则可找到一个区间上恒有f(x)>0;f(x0)<0时同样成立;f(x0)=0不存在保号性。并且只能推出局部保号性,因为f(x0)>0肯定不能说明对所有的x f(x)>0.
设函数为 f(x),若其在x0处有极限,且有f(x0)>0, 那么根据定义,对任意的ε>0,存在δ>0, 满足 |f(x)-f(x0)|<ε, 即有 f(x0)-ε<f(x)<f(x0)+ε. 当取 ε=f(x0),则上式变为 0=f(x0)-f(x0)<f(x),在(x0-δ,x0+δ)上成立。 即找到一个区间上,f(x)大于零。 我们称此为局部保号性(号为函数值的正负号):即若其在x0处有极限,有f(x0)>0,则可找到一个区间上恒有f(x)>0;f(x0)<0时同样成立;f(x0)=0不存在保号性。并且只能推出局部保号性,因为f(x0)>0肯定不能说明对所有的x f(x)>0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对于连续函数f(x),若在x=x0处f(x)>(或<)0,那么存在正数δ,使得f(x)在x0的邻域(x0-δ,x0+δ)内均>(或<)0说白了也就是连续函数在一个很小的范围内符号不会突变我通常是这么直观地想,连续函数就像是一条平面上的光滑曲线,可以被无限分割,所以在某个x周围的无数xi都满足f(x)和f(xi)的符号相同
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |