离散数学证明题.
设R是A上的自反和传递关系,S是A上的二元关系,当且仅当(a,b)属于R且(b,a)也属于R时有(a,b)属于S,证明S是A上的等价关系...
设R是A上的自反和传递关系,S是A上的二元关系,当且仅当(a,b)属于R且(b,a)也属于R时有(a,b)属于S,证明S是A上的等价关系
展开
1个回答
展开全部
证明:
自反性:令a=b,显然(a,b)=(b,a)=(a,a)∈R,故(a,a)∈S,S具有自反性
对称性:若(a,b)∈S,则说明(a,b)∈R且(b,a)∈R,于是自然(b,a)∈S。故S具有对称性
传递性:若(a,b)∈S,(b,c)∈S,则说明(a,b)∈R,(b,a)∈R,(b,c)∈R,(c,b)∈R
因为R具有传递性,所以由(a,b)∈R和(b,c)∈R得出(a,c)∈R,由(c,b)∈R和(b,a)∈R得出(c,a)∈R,得到(a,c)∈S。故S具有传递性
综合上述:S在A上具有自反性,对称性,传递性。S是A上的等价关系。
自反性:令a=b,显然(a,b)=(b,a)=(a,a)∈R,故(a,a)∈S,S具有自反性
对称性:若(a,b)∈S,则说明(a,b)∈R且(b,a)∈R,于是自然(b,a)∈S。故S具有对称性
传递性:若(a,b)∈S,(b,c)∈S,则说明(a,b)∈R,(b,a)∈R,(b,c)∈R,(c,b)∈R
因为R具有传递性,所以由(a,b)∈R和(b,c)∈R得出(a,c)∈R,由(c,b)∈R和(b,a)∈R得出(c,a)∈R,得到(a,c)∈S。故S具有传递性
综合上述:S在A上具有自反性,对称性,传递性。S是A上的等价关系。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询