三角形ABC中满足向量AB垂直向量AC,M是BC中点若|向量AB|=|向量AC|求向量AB+2向量AC与向量2AB+向量AC的

夹角的余弦值若O是线段AM上任意一点且|向量AB|=|向量AC|=根号2,求向量OA*向量OB+向量OC*向量OA的最小值具体一点啊拜托了。。。急求全步骤... 夹角的余弦值
若O是线段AM上任意一点且|向量AB|=|向量AC|=根号2,求向量OA*向量OB+向量OC*向量OA的最小值

具体一点啊拜托了。。。急求

全步骤
展开
痞子hello
2012-03-17 · TA获得超过3647个赞
知道小有建树答主
回答量:901
采纳率:100%
帮助的人:1460万
展开全部

解:由题意知三角形ABC是等腰直角三角形,设MC的长度为X

 建立适当坐标系,以M为原点

 知A,B,C的坐标分别为

 A(0,X),  B(-X,0),  C(X,0)

AB向量=(-X,-X),  向量AC=(X,-X)

令 a=2AB向量+AC向量=(-X,-3X)

    b=AB向量+2AC向量=(X, -3X)

ab=|a||b|cos(a^b)

所以向量AB+2向量AC与向量2AB+向量AC的为

cos(a^b)=ab/[|a||b|]=8X^2/10X^2=4/5

2)OA*OB+OC*OA=OA*(OB+OC)

  如图,根据平行四边形法则,知 OB+OC=ON=2OM

 设O的坐标为(0,Y) ,  OM=(0,-Y)  ,    (0<Y<1)

 A的坐标为(0,1),OA=(0,1-Y)

所以 S= OA*(OB+OC)=2OA*OM

        =2Y(1-Y)(cos180°)

      = -2Y(1-Y)

         = 2(Y-1/2)^2-1/2

当Y=1/2时,S取最小值-1/2

即O在线段AM的中点时,可取最小值。

lljjdd567
2012-03-17 · TA获得超过197个赞
知道答主
回答量:324
采纳率:0%
帮助的人:94.7万
展开全部
由题意知三角形ABC是等腰直角三角形,设MC的长度为X
建立适当坐标系
A(0,X), B(-X,0), C(X,0)
AB向量=(-X,-X), 向量AC=(X,-X)
令 a=2AB向量+AC向量=(-X,-3X)
b=AB向量+2AC向量=(X, -3X)
ab=|a||b|cos(a^b)
所以向量AB+2向量AC与向量2AB+向量AC的为

2)OA*OB+OC*OA=OA*(OB+OC)

设O的坐标为(0,Y) , OM=(0,-Y) , (0<Y<1)
A的坐标为(0,1),OA=(0,1-Y)
所以 S= OA*(OB+OC)=2OA*OM
=2Y(1-Y)(cos180°)
= -2Y(1-Y)
= 2(Y-1/2)^2-1/2
当Y=1/2时,S取最小值-1/2
即O在线段AM的中点时,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2012-03-17 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
(1)
AB.AC=0
BM = MC
|AB|=|AC|=k1
To find : AB+2AC, 2AB+AC 夹角
let AB+2AC, 2AB+AC 夹角=x
(AB+2AC).(2AB+AC) = |AB+2AC||2AB+AC|cosx
2|AB|^2+2|AC|^2 = √(|AB|^2 +4|AC|^2). √(4|AB|^2 +|AC|^2) cosx
4k1^2 = 5k1^2cosx
cosx =4/5
x = arccos(4/5)
(2)
M is mid point of BC
let OA = kAM
= k(AB+BM)
= k(AB+ 1/2BC)
= k(AB+ 1/2(-AB+AC))
= k/2(AB+AC)
OB = OA+AB = k/2(AB+ AC) +AB = (k/2+1)AB + (k/2)AC
OC = OA+AC = k/2((AB+ AC) +AC = (k/2)AB + (k/2+1)AC
|AB|=|AC|=√2
S=OA.OB+OC.OA
= OA.(OB+OC)
= k/2(AB+AC) .((k/2+1)AB + (k/2)AC +(k/2)AB + (k/2+1)AC)
= k/2(AB+AC). ((k+1)AB + (k+1)AC)
= [k(k+1)/2]( |AB|^2 + |AC|^2)
= 2k(k+1)
= 2(k+1/2)^2 -1/2

min OA.OB+OC.OA = -1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式