为什么可导不一定可微?

 我来答
阿zi是个好大儿
2022-03-28 · TA获得超过4324个赞
知道答主
回答量:136
采纳率:100%
帮助的人:3.1万
展开全部

可导不一定可微是因为各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表示的广义面中在此点领域内不含有“洞”存在,可含有有限个断点。

在一元函数中,可导与可微等价。一元函数中可导与可微等价,它们与可积无关。 多元函数可微必可导,而反之不成立。即:在一元函数里,可导是可微的充分必要条件;在多元函数里,可导是可微的必要条件,可微是可导的充分条件

可微条件:

1、必要条件

若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

2、充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

中智咨询
2024-08-28 广告
在当今竞争激烈的商业环境中,企业需要不断提高自身的竞争力,以保持市场份额和增加利润。通过人效提升,企业可以更有效地利用有限的资源,提高生产力和效益,从而实现盈利目标。中智咨询提供全方位的组织人效评价与诊断、人效提升方案等数据和管理咨询服务。... 点击进入详情页
本回答由中智咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式