求与直线2x-y+1=0平行且与圆x平方+y平方+2y-19=0相切的直线方程

 我来答
户如乐9318
2022-09-04 · TA获得超过6652个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:139万
展开全部
设与直线亮唯2x-y+1=0平行的直线为 2x-y+a=0
x^2+y^2+2y-19=0 x^2+(y^2+2y+1)=19+1=20 x^2+(y+1)^2=20
因为与圆x平方+y平方+2y-19=0相切
所以圆心(0,-1)到直线 2x-y+a=0的距离为 根号20
/0-(-1)+a//根御困号[(2^2+(-1)^2]=根号20
/a/=根号5*根号20=10 a=10 a=-10
与直线2x-y+1=0平行且与圆x平敬拆培方+y平方+2y-19=0相切的直线方程
为 2x-y-10=0 或 2x-y+10=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式