设S1=1+1/(1^2)+1/(2^2),S2=1+1/(2^2)+1/(3^2),S3=1+1/(3^2)+1/(4^2)......Sn=1+1/[n^2+1/(n+1)^2].
设S1=1+1/(1^2)+1/(2^2),S2=1+1/(2^2)+1/(3^2),S3=1+1/(3^2)+1/(4^2)......Sn=1+1/[n^2+1/(n...
设S1=1+1/(1^2)+1/(2^2),S2=1+1/(2^2)+1/(3^2),S3=1+1/(3^2)+1/(4^2)......Sn=1+1/[n^2+1/(n+1)^2].设S=√S1+√S2+√S3+......+√Sn,则S=? (用含n的代数式表示,其中n为正整数)
展开
2个回答
展开全部
√S1=1+1/(1×2) √S2=1+1/(2×3) ….√Sn=1+1/(n×(n+1))
S=(1+1+…..+1)+1/(1×2)+1/(2×3)+…+1/(n×(n+1))
=n+{(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+[1/n-1/(n+1)]}
=n+[1-1/2+1/2-1/3+1/3-1/4+......+1/n-1/(n+1)]
=n+[1-1/(n+1)]
= n+n/(n+1)
S=(1+1+…..+1)+1/(1×2)+1/(2×3)+…+1/(n×(n+1))
=n+{(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+[1/n-1/(n+1)]}
=n+[1-1/2+1/2-1/3+1/3-1/4+......+1/n-1/(n+1)]
=n+[1-1/(n+1)]
= n+n/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询