
在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c
抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(用含t的代数式表示);⑵当4<t<5时,设抛物...
抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(用含t的代数式表示);⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请写出t的取值范围. 我只不明白第三问,为什么是7/2和11/3之间?
展开
2个回答
展开全部
转的:
解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,
再把x=t,y=0代入y=x2+bx,得t2+bt=0,
∵t>0,
∴b=-t;
(2)①不变.
∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,
∴当x=1时,y=1-t,
∴M(1,1-t),
∴AM=|1-t|=t-1,
∵OP=t,
∴AP=t-1,
∴AM=AP,
∵∠PAM=90°,
∴∠AMP=45°;
②S=S四边形AMNP-S△PAM=S△DPN+S梯形NDAM-S△PAM
=1/2(t-4)(4t-16)+1/2 [(4t-16)+(t-1)]×3-1/2(t-1)(t-1)=3/2 t^2-2/15t+6.
解
3/2 t^2-2/15t+6=21/8
得:t1=1/2 ,t2=9/2 ,
∵4<t<5,
∴t1=1/2舍去,∴t=2/9.
(3)
7/2<t< 11/3
.
①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解;
②左边3个好点在抛物线上方,右边3个好点在抛物线下方:
则有-4<y2<-3,-2<y3<-1即-4<4-2t<-3,-2<9-3t<-1,
解得2/7<t<4且10/3<t<11/3
;解得7/2<t< 11/3
③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解;
④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解;
⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解;综上所述,t的取值范围是:7/2<t< 11/3
解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,
再把x=t,y=0代入y=x2+bx,得t2+bt=0,
∵t>0,
∴b=-t;
(2)①不变.
∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,
∴当x=1时,y=1-t,
∴M(1,1-t),
∴AM=|1-t|=t-1,
∵OP=t,
∴AP=t-1,
∴AM=AP,
∵∠PAM=90°,
∴∠AMP=45°;
②S=S四边形AMNP-S△PAM=S△DPN+S梯形NDAM-S△PAM
=1/2(t-4)(4t-16)+1/2 [(4t-16)+(t-1)]×3-1/2(t-1)(t-1)=3/2 t^2-2/15t+6.
解
3/2 t^2-2/15t+6=21/8
得:t1=1/2 ,t2=9/2 ,
∵4<t<5,
∴t1=1/2舍去,∴t=2/9.
(3)
7/2<t< 11/3
.
①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解;
②左边3个好点在抛物线上方,右边3个好点在抛物线下方:
则有-4<y2<-3,-2<y3<-1即-4<4-2t<-3,-2<9-3t<-1,
解得2/7<t<4且10/3<t<11/3
;解得7/2<t< 11/3
③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解;
④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解;
⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解;综上所述,t的取值范围是:7/2<t< 11/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-04-02
展开全部
sm
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询