设f(x)=1/2^x+√2,,利用课本中推导等差数列前n项和的方法,求f(-8)+f(-7)+.....+f(0)+....+f(8)+f(9)的值
1个回答
展开全部
f(t)+f(1-t)=1/(2^t+根号2)+1/(2^(1-t)+根号2)……后面的分式分子分母同乘以 2^t
=1/(2^t+根号2)+2^t/(2+根号2* 2^t)
=根号2/(根号2*2^t+2)+2^t/(2+根号2* 2^t)
=(根号2+2^t )/(根号2*2^t+2)
=1/根号2=√2/2.
S=f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)
S=f(9)+f(8)+.......+f(1)+....+f(-7)+f(-8)
相加,对应的和都是√2/2,
2S=√2/2*18
S=9√2/2.
【√2 表示 根号2】
=1/(2^t+根号2)+2^t/(2+根号2* 2^t)
=根号2/(根号2*2^t+2)+2^t/(2+根号2* 2^t)
=(根号2+2^t )/(根号2*2^t+2)
=1/根号2=√2/2.
S=f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)
S=f(9)+f(8)+.......+f(1)+....+f(-7)+f(-8)
相加,对应的和都是√2/2,
2S=√2/2*18
S=9√2/2.
【√2 表示 根号2】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询