f(x)=(log2x/4)(log2x/2)的最小值
1个回答
展开全部
f(x)=(log2x/4)(log2x/2)
=[log(2)x-log(2)4][log(2)x-log(2)2]
=[log(2)x-2][log(2)x-1]
=log(2)²x-3log(2)x+2
设t=log(2)x ,t∈R
y=t²-3t+2=(t-3/2)²-1/4
∴t=3/2时,即log(2)x=3/2,x=2√2时,
y=f(x)取得最小值-1/4
=[log(2)x-log(2)4][log(2)x-log(2)2]
=[log(2)x-2][log(2)x-1]
=log(2)²x-3log(2)x+2
设t=log(2)x ,t∈R
y=t²-3t+2=(t-3/2)²-1/4
∴t=3/2时,即log(2)x=3/2,x=2√2时,
y=f(x)取得最小值-1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询