已知:sin(a)-cos(b)=√6/6 sin(b)-cos(a)=√2/2 求:cos(a+b)

ab均为锐角... a b均为锐角 展开
feidao2010
2012-04-15 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解:
sin(a)-cos(b)=√6/6 , (sina-cosb)²=1/6 (1)
sin(b)-cos(a)=√2/2 , (sinb-cosa)²=1/2 (2)
(1)+(2)
sin²a+cos²b-2sinacosb+sin²b+cos²a-2sinbcosa=2/3
2-2(sinacosb+cosasinb)=2/3
2-2sin(a+b)=2/3
sin(a+b)=2/3
a,b是锐角
sinb>√2/2>2/3
所以 a+b是钝角
所以 cos(a+b)=-√[1-sin²(a+b)]=-√(1-4/9)=-√5/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式