
函数f(x)=sin^x+2倍根号3sinxcosx+3cos^2x若x属于[0,π/2]求值域?
1个回答
展开全部
f(x)=sin^x+2倍根号3sinxcosx+3cos^2x
=(sin^2x+cos^2x)+根号3sin2x+(2cos^2x-1)+1
=1+根号3sin2x+cos2x+1
=2sin(2x+Pai/6)+2
0<=x<=Pai/2
那么有Pai/6<=2x+Pai/6<=7Pai/6
-1/2<=sin(2x+7Pai/6)<=1
故有2*(-1/2)+2<=f(x)<=2*1+2
即值域是[1,4]
=(sin^2x+cos^2x)+根号3sin2x+(2cos^2x-1)+1
=1+根号3sin2x+cos2x+1
=2sin(2x+Pai/6)+2
0<=x<=Pai/2
那么有Pai/6<=2x+Pai/6<=7Pai/6
-1/2<=sin(2x+7Pai/6)<=1
故有2*(-1/2)+2<=f(x)<=2*1+2
即值域是[1,4]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询