求函数y=﹙sin²α-5sinα+7﹚/﹙3-sinα﹚的值域
展开全部
y=[(sinα)^2-5sinα+7]/(3-sinα)
=[(3-sinα)^2-(3-sinα)+1]/(3-sinα)
=(3-sinα)+1/(3-sinα)-1
2<=3-sinα<=4。
而对勾函数f(x)=x+1/x在区间[2,4]上单调递增,即最小值是f(2)=5/2、最大值是f(4)=17/4。
所以,3/2<=(3-sinα)+1/(3-sinα)-1<=13/4。
即函数y=[(sinα)^2-5sinα+7]/(3-sinα)的值域是[3/2,13/4]。
=[(3-sinα)^2-(3-sinα)+1]/(3-sinα)
=(3-sinα)+1/(3-sinα)-1
2<=3-sinα<=4。
而对勾函数f(x)=x+1/x在区间[2,4]上单调递增,即最小值是f(2)=5/2、最大值是f(4)=17/4。
所以,3/2<=(3-sinα)+1/(3-sinα)-1<=13/4。
即函数y=[(sinα)^2-5sinα+7]/(3-sinα)的值域是[3/2,13/4]。
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询