初二数学函数问题,注意写过程。
如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1。 1.求直线BC的解析式: &...
如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1。 1.求直线BC的解析式: 2.直线EF:y=kx-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由? 3.如图,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。
展开
2个回答
展开全部
1.把A(6,0)带人y=-x-b,得:0=-6-b,解得:b=-6,∴y=-x+6,当x=0时,y=6,所以B(0,6)∴BO=6 ∵OB:OC=3:1 ∴OC=2 ∵BC交x轴负半轴于C ∴C(-2,0) 设BC的函数关系式为y=kx+b,把B(0,6),C(-2,0)带人y=kx+b,得y=3x+6
2.你根据第一小题求得的结果画出直线BC
假设存在满足题中条件的K值,则:
直线EF:y=kx-k交X轴于点D,即点D的坐标为(a,0)代入解析式即0=k*a-k求的a=1
所以点D的坐标即为(1,0)
-----------你在图中标出点D,且过点D做一直线,相交与直线AB,BC分别与点E,F
然后你仔细观察三角形BDF和三角形BDE,
这两个三角形的面积你可以表示为S△BDE=DE*h*0.5,,,S△BDF=DF*h*0.5
而这个时候你可以发现两个三角形的高其实是一样的,
要使这两个三角形面积相等,只要满足DE=DF就可以了,
也就是点E,F关于点D对称
由于点E在直线AB上,所以点E的坐标为(a,-a+6)
同理点F在直线BC上,所以点F的坐标为(b,3b+6)
而上面我们已经求得点D的坐标为(1,0)
点EF又关于点D对称,所以我们可以得到两个等式,即:
(a+b)/2=1
(-a+6+3b+6)/2=0
这样就可以求得:a=9/2,b=-5/2
这样点E的坐标即为(9/2,3/2),,,点F的坐标即为(-5/2,-3/2)
随便选择点E或点F代入直线EF 的解析式,得到K=3/7
所以存在K,且K=3/7
3.我们先假设直线QA的解析式为y=ax+b,点P的坐标为(p,0)
然后,你得画图,这道题必须依靠图
在图中,你还须过点Q作直线QH垂直于X轴,交点为H,
这样你的图中就可以形成两个三角形,分别是三角形BOP,和三角形PHQ,且两个三角形都是直角三角形
由于三角形BPQ为等腰直角三角形,直角顶点为P
所以得到:BP=PQ,角BPO+角QPH=90度
又因为在直角三角形中,所以角QPH+角PQH=90度
所以,根据上面两个等式,我们可以得到,角BPO=角PQH
且PB=QP,
所以直角三角形BOP全等于直角三角形PHQ
得到:OP=HQ=p,OB=HP=6
这样我们就可以得到点Q的坐标为(p+6,p)
然后将点A和点P的坐标代入直线QA的解析式:y=ax+b中,得到:
a=1,b=-6
也就是说a,b为固定值,并不随点P(p,0)的改变而改变
这样直线QA:y=x-6的延长线交于Y轴的K点也不随点P的变化而变化了,
求得点K的坐标为(0,-6)
2.你根据第一小题求得的结果画出直线BC
假设存在满足题中条件的K值,则:
直线EF:y=kx-k交X轴于点D,即点D的坐标为(a,0)代入解析式即0=k*a-k求的a=1
所以点D的坐标即为(1,0)
-----------你在图中标出点D,且过点D做一直线,相交与直线AB,BC分别与点E,F
然后你仔细观察三角形BDF和三角形BDE,
这两个三角形的面积你可以表示为S△BDE=DE*h*0.5,,,S△BDF=DF*h*0.5
而这个时候你可以发现两个三角形的高其实是一样的,
要使这两个三角形面积相等,只要满足DE=DF就可以了,
也就是点E,F关于点D对称
由于点E在直线AB上,所以点E的坐标为(a,-a+6)
同理点F在直线BC上,所以点F的坐标为(b,3b+6)
而上面我们已经求得点D的坐标为(1,0)
点EF又关于点D对称,所以我们可以得到两个等式,即:
(a+b)/2=1
(-a+6+3b+6)/2=0
这样就可以求得:a=9/2,b=-5/2
这样点E的坐标即为(9/2,3/2),,,点F的坐标即为(-5/2,-3/2)
随便选择点E或点F代入直线EF 的解析式,得到K=3/7
所以存在K,且K=3/7
3.我们先假设直线QA的解析式为y=ax+b,点P的坐标为(p,0)
然后,你得画图,这道题必须依靠图
在图中,你还须过点Q作直线QH垂直于X轴,交点为H,
这样你的图中就可以形成两个三角形,分别是三角形BOP,和三角形PHQ,且两个三角形都是直角三角形
由于三角形BPQ为等腰直角三角形,直角顶点为P
所以得到:BP=PQ,角BPO+角QPH=90度
又因为在直角三角形中,所以角QPH+角PQH=90度
所以,根据上面两个等式,我们可以得到,角BPO=角PQH
且PB=QP,
所以直角三角形BOP全等于直角三角形PHQ
得到:OP=HQ=p,OB=HP=6
这样我们就可以得到点Q的坐标为(p+6,p)
然后将点A和点P的坐标代入直线QA的解析式:y=ax+b中,得到:
a=1,b=-6
也就是说a,b为固定值,并不随点P(p,0)的改变而改变
这样直线QA:y=x-6的延长线交于Y轴的K点也不随点P的变化而变化了,
求得点K的坐标为(0,-6)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询