已知三角形ABC的中线BD\CE交于点O,F\G分别是OB\OC的中点。求证:四边形DEFG是平行四边形
3个回答
展开全部
DE是ΔABC的中位线,∴DE∥AB,且DE=1/2AB,
FG是ΔOAB的中位线,∴FG∥AB,且FG=1/2AB
∴DE∥FG,且DE=FG
∴四边形DEFG是平行四边形。
FG是ΔOAB的中位线,∴FG∥AB,且FG=1/2AB
∴DE∥FG,且DE=FG
∴四边形DEFG是平行四边形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵BD、CE为三角形中线
∴D、E为AB、AC中点
∴DE//BC,DE=1/2BC(三角形ABC中位线)
∵F、G为OB、OC中点
∴FG//BC,FG=1/2BC(三角形OBC中位线)
∴DE//FG,DE=FG
∴四边形DEFG是平行四边形
这道题使用了中位线的性质,画个图就能看出来啦
∴D、E为AB、AC中点
∴DE//BC,DE=1/2BC(三角形ABC中位线)
∵F、G为OB、OC中点
∴FG//BC,FG=1/2BC(三角形OBC中位线)
∴DE//FG,DE=FG
∴四边形DEFG是平行四边形
这道题使用了中位线的性质,画个图就能看出来啦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询