∫(lnx/x^3)dx怎么算
2个回答
2012-04-24
展开全部
宜用分部积分法:
∫ lnx / x³ dx
= ∫ lnx d(-1 / 2x²),lnx不会积分,所以先将1 / x³积分后放入dx里
= -lnx / 2x² + (1 / 2)∫ (1 / x²) d(lnx)
= -lnx / 2x² + (1 / 2)∫ 1 / x³ dx
= -lnx / 2x² + (1 / 2)(-1 / 2x²) + C
= -lnx / 2x² -1 / 4x² + C
= -(2lnx + 1) / 4x² + C
∫ lnx / x³ dx
= ∫ lnx d(-1 / 2x²),lnx不会积分,所以先将1 / x³积分后放入dx里
= -lnx / 2x² + (1 / 2)∫ (1 / x²) d(lnx)
= -lnx / 2x² + (1 / 2)∫ 1 / x³ dx
= -lnx / 2x² + (1 / 2)(-1 / 2x²) + C
= -lnx / 2x² -1 / 4x² + C
= -(2lnx + 1) / 4x² + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询