如图在正方形ABCD中,EF分别是边AD、CD上的点,AE=Ed,DF=1/4DC,连接EF并延长交BC的延长线于点G。
2个回答
展开全部
(1)证明:∵ABCD为正方形,
∴AD=AB=DC=BC,∠A=∠D=90°,
∵AE=ED,
∴AE/AB=AE/AD=1/2,
∵DF=1/4DC,
∴DF/DE=(1/4CD)/(1/2AD)=1/2
∴AE/AB=DF/DE,
∴△ABE∽△DEF;
(2)解:∵ABCD为正方形,
∴ED∥BG,
∴△DEF∽△CGF
∴ED/CG=DF/CF,
∵DF=1/4DC
∴DF/CF=1/3
又ED=1/2AD=1/2*4=2,
∴CG=6,
∴BG=BC+CG=4+6=10.
∴AD=AB=DC=BC,∠A=∠D=90°,
∵AE=ED,
∴AE/AB=AE/AD=1/2,
∵DF=1/4DC,
∴DF/DE=(1/4CD)/(1/2AD)=1/2
∴AE/AB=DF/DE,
∴△ABE∽△DEF;
(2)解:∵ABCD为正方形,
∴ED∥BG,
∴△DEF∽△CGF
∴ED/CG=DF/CF,
∵DF=1/4DC
∴DF/CF=1/3
又ED=1/2AD=1/2*4=2,
∴CG=6,
∴BG=BC+CG=4+6=10.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询