2个回答
展开全部
)∵PQ是矩形ABCD中AD,BC的中点,
∴ AP=1/2AD=1/2AF,∠APF=90°,
∴∠AFP=30°,
∴ PF=根3×AP=6根3,
∴∠FAD=60°,
∴ ∠DAE=1/2∠FAD=30°,
∴ AE=AD/cos30°=83cm,
(2)∵ DP=1/3AD=4,
∴ AP=2/3AD=8
∴ FP=根(12²2-8²)=4根5,
∵DE=EF,∠AED=∠AEF,∠AED=∠FGE,
∴∠FGE=∠FEG,
∴EF=GF,
设DE=x,则GF=x
∵△APG∽△ADE,
∴ PG/DE=AP/AD,
∴ PG=2/3x
∴ 2/3x+x=4根5,
∴ x=(12根5)/5,
∴ AE=根(AD²+DE²)=(12根30)/5;
(3)①由(2) AE=根(AD²+DE²)=(12根30)/5,
可得 AE=12根(2n/(2n-1)),
②∵ AE=12根(2n/(2n-1)),
∴当n越来越大时,AE越来越接近于12.
故答案为:12. 是不是这啊,把你的题目百度下有啊
∴ AP=1/2AD=1/2AF,∠APF=90°,
∴∠AFP=30°,
∴ PF=根3×AP=6根3,
∴∠FAD=60°,
∴ ∠DAE=1/2∠FAD=30°,
∴ AE=AD/cos30°=83cm,
(2)∵ DP=1/3AD=4,
∴ AP=2/3AD=8
∴ FP=根(12²2-8²)=4根5,
∵DE=EF,∠AED=∠AEF,∠AED=∠FGE,
∴∠FGE=∠FEG,
∴EF=GF,
设DE=x,则GF=x
∵△APG∽△ADE,
∴ PG/DE=AP/AD,
∴ PG=2/3x
∴ 2/3x+x=4根5,
∴ x=(12根5)/5,
∴ AE=根(AD²+DE²)=(12根30)/5;
(3)①由(2) AE=根(AD²+DE²)=(12根30)/5,
可得 AE=12根(2n/(2n-1)),
②∵ AE=12根(2n/(2n-1)),
∴当n越来越大时,AE越来越接近于12.
故答案为:12. 是不是这啊,把你的题目百度下有啊
展开全部
是2011年浙江省宁波市七中保送生推荐考试数学试卷,也是2012年浙江省丽水市莲都区中考数学模拟试卷,具体你可以百度搜索下!谢谢,记得给我分哦!!
23.矩形纸片ABCD中,AD=12cm,现将这张纸片按下列图示方式折叠,AE是折痕.
(1)如图1,P,Q分别为AD,BC的中点,点D的对应点F在PQ上,求PF和AE的长;
(2)如图2,DP=13
AD,CQ=1
3
BC,点D的对应点F在PQ上,求AE的长;
(3)如图3,DP=1
n
AD,CQ=1
n
BC,点D的对应点F在PQ上.
①直接写出AE的长(用含n的代数式表示); ②当n越来越大时,AE的长越来越接
1、)∵PQ是矩形ABCD中AD,BC的中点,
∴ AP=1/2AD=1/2AF,∠APF=90°,
∴∠AFP=30°,
∴ PF=根3×AP=6根3,
∴∠FAD=60°,
∴ ∠DAE=1/2∠FAD=30°,
∴ AE=AD/cos30°=83cm,
(2)∵ DP=1/3AD=4,
∴ AP=2/3AD=8
∴ FP=根(12²2-8²)=4根5,
∵DE=EF,∠AED=∠AEF,∠AED=∠FGE,
∴∠FGE=∠FEG,
∴EF=GF,
设DE=x,则GF=x
∵△APG∽△ADE,
∴ PG/DE=AP/AD,
∴ PG=2/3x
∴ 2/3x+x=4根5,
∴ x=(12根5)/5,
∴ AE=根(AD²+DE²)=(12根30)/5;
(3)①由(2) AE=根(AD²+DE²)=(12根30)/5,
可得 AE=12根(2n/(2n-1)),
②∵ AE=12根(2n/(2n-1)),
∴当n越来越大时,AE越来越接近于12.
故答案为:12.
23.矩形纸片ABCD中,AD=12cm,现将这张纸片按下列图示方式折叠,AE是折痕.
(1)如图1,P,Q分别为AD,BC的中点,点D的对应点F在PQ上,求PF和AE的长;
(2)如图2,DP=13
AD,CQ=1
3
BC,点D的对应点F在PQ上,求AE的长;
(3)如图3,DP=1
n
AD,CQ=1
n
BC,点D的对应点F在PQ上.
①直接写出AE的长(用含n的代数式表示); ②当n越来越大时,AE的长越来越接
1、)∵PQ是矩形ABCD中AD,BC的中点,
∴ AP=1/2AD=1/2AF,∠APF=90°,
∴∠AFP=30°,
∴ PF=根3×AP=6根3,
∴∠FAD=60°,
∴ ∠DAE=1/2∠FAD=30°,
∴ AE=AD/cos30°=83cm,
(2)∵ DP=1/3AD=4,
∴ AP=2/3AD=8
∴ FP=根(12²2-8²)=4根5,
∵DE=EF,∠AED=∠AEF,∠AED=∠FGE,
∴∠FGE=∠FEG,
∴EF=GF,
设DE=x,则GF=x
∵△APG∽△ADE,
∴ PG/DE=AP/AD,
∴ PG=2/3x
∴ 2/3x+x=4根5,
∴ x=(12根5)/5,
∴ AE=根(AD²+DE²)=(12根30)/5;
(3)①由(2) AE=根(AD²+DE²)=(12根30)/5,
可得 AE=12根(2n/(2n-1)),
②∵ AE=12根(2n/(2n-1)),
∴当n越来越大时,AE越来越接近于12.
故答案为:12.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询