化简:[(1+sinθ+cosθ)(sinθ/2-cosθ/2)]/(√2+2cosθ) (0<θ<π)=
2个回答
展开全部
原式=[(1+sinθ)+cosθ](sin θ/2 - cos θ/2) / √2(1+cosθ)
=[(sin θ/2 + cos θ/2)² + (cos θ/2 + sin θ/2)(cos θ/2 - sin θ/2)](sin θ/2 - cos θ/2) / √2×2cos² θ/2
(∵0<θ<π ,∴0<θ/2<π/2)
=[(cos θ/2 + sin θ/2)(2cos θ/2)](sin θ/2 - cos θ/2) / (2cos θ/2)
=(cos θ/2 + sin θ/2)(sin θ/2 - cos θ/2)
=-(cos² θ/2 - sin² θ/2)
=-cosθ
=[(sin θ/2 + cos θ/2)² + (cos θ/2 + sin θ/2)(cos θ/2 - sin θ/2)](sin θ/2 - cos θ/2) / √2×2cos² θ/2
(∵0<θ<π ,∴0<θ/2<π/2)
=[(cos θ/2 + sin θ/2)(2cos θ/2)](sin θ/2 - cos θ/2) / (2cos θ/2)
=(cos θ/2 + sin θ/2)(sin θ/2 - cos θ/2)
=-(cos² θ/2 - sin² θ/2)
=-cosθ
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询