高等数学和线性代数的区别在哪里?
一楼,二楼,三楼,四楼的各位大哥大姐,特别是二楼,四楼的各位大哥大姐,叔叔阿姨们,我太太太感谢你们了。听了你们一习话,我信心倍增。你们真真太好了!我真不知道应该把最佳答案给你们当中的哪一个。所以我只好发起投票了。说实在的,做选择真是好痛苦!祝你们好人一生平安。 展开
区别就是:线性代数是高等数学中的一部分。
扩展资料
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。
例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。
所谓“线性”,指的就是如下的数学关系:
。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系
的线性算子f都有哪几类,以及他们分别都有什么性质。
高等数学:
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。
工科、理科研究生考试的基础科目。
高等数学和线性代数的区别在:线性代数只是高等数学里面的一个重要部分,线性代数重点是掌握矩形这一块。线性代数:非数学系的理工科生所学。高等数学:属于数学系学生所学。
拓展资料:
“高等数学”指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。
“线性代数”是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。它的数学关系:
简单来说,手机里的每一个程序,每一个芯片,他们的设计理论基础都要用到高数和线代。
手机能扫二维码就是线性代数的功劳。手机打电话,mp3能调模式等等,也是线性代数的功劳。而没有高数,你家电压就会不稳......
高等代数掌握的东西多些,内容上增加多项式和双线性函数、 酉空间、辛空间等的抽象内容,而且高等代数主要以证明为主,属于数学系学生所学。
1.高数比线代难
2.两者相互联系很小,不学高数,也能学会线代,也就是说随便学哪个,对另一个都没什么影响,学校开课是先学高数,但我觉得两者没什么共性
3.线代其实只要学过高中的行列式,入门是很快的,而高数要花的功夫就比较多了
以上是我个人感觉,我是针对大学开的课来说的
线性代数是高等代数内容的一重要部分,并且线性代数重点是掌握矩阵这一块,计算居多,是非数学系的理工科生学的;
高等代数掌握的东西多一些,内容上增加多项式和双线性函数、 酉空间、辛空间等抽象内容,而且高等代数主要以证明为主,属于数学系学生所学。
拓展资料:
线性代数:
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
高等数学:
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。 广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。 主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。 工科、理科研究生考试的基础科目。