高中数学-----------------数列与不等式结合的题目
数列{an}满足A1=1/2,A(n+1)=1/(2-An)(1)求an通项公式(2)若bn=1/an-1,{bn}的前n次和为Bn,若存在整数m,对任意n∈N+且n≥2...
数列{an}满足A1=1/2, A(n+1)=1/(2-An)
(1)求an通项公式
(2)若bn=1/an-1,{bn}的前n次和为Bn,若存在整数m,对任意n∈N+且n≥2都有B3n-Bn>m/20成立,求m的最大值。
(3)求证:Σ[1-ai/a(i+1)][1/√a(i+1)]<2(√2-1)(Σ上面是n,下面是i=1)
------------------------------------------------------------
答案:
(2)m最大值为18
(1),(3)是证明
打错了------------------第一问的答案是an=n/(n+1) 展开
(1)求an通项公式
(2)若bn=1/an-1,{bn}的前n次和为Bn,若存在整数m,对任意n∈N+且n≥2都有B3n-Bn>m/20成立,求m的最大值。
(3)求证:Σ[1-ai/a(i+1)][1/√a(i+1)]<2(√2-1)(Σ上面是n,下面是i=1)
------------------------------------------------------------
答案:
(2)m最大值为18
(1),(3)是证明
打错了------------------第一问的答案是an=n/(n+1) 展开
2个回答
展开全部
A(n+1)=1/(2-An)可以用特征根发求通项公式,实在不会的话就用数学归纳法。
本题对应的特征方程为x(2-x)=1所以x=1
所以an=1+1/Cn其中Cn=-2-(n-1)=-n-1所以an=n/(n+1)
bn=1/n第二问比较简单
设Dn=B3n-Bn=1/(n+1)+1/(n+2)+1/(n+3)+·····+1/(n+2n)
所以Dn+1=B3(n+1)-Bn+1=1/(n+2)+1/(n+3)+·····+1/(n+1+2n+2)
所以Dn+1-Dn=1/(n+1+2n)+1/(n+1+2n+1)+1/(n+1+2n+2)-1/(n+1)
=1/(3n+1)+1/(3n+2)+1/(3n+3)-3/(3n+3)
=1/(3n+1)+1/(3n+2)-2/(3n+3)>0
所以Dn+1>Dn即Dn递增,所以D1=B3-B1=1/2+1/3=5/6最小
对任意n∈N+且n≥2都有B3n-Bn>m/20成立
所以5/6>m/20即m<50/3所以m最大为16
本题对应的特征方程为x(2-x)=1所以x=1
所以an=1+1/Cn其中Cn=-2-(n-1)=-n-1所以an=n/(n+1)
bn=1/n第二问比较简单
设Dn=B3n-Bn=1/(n+1)+1/(n+2)+1/(n+3)+·····+1/(n+2n)
所以Dn+1=B3(n+1)-Bn+1=1/(n+2)+1/(n+3)+·····+1/(n+1+2n+2)
所以Dn+1-Dn=1/(n+1+2n)+1/(n+1+2n+1)+1/(n+1+2n+2)-1/(n+1)
=1/(3n+1)+1/(3n+2)+1/(3n+3)-3/(3n+3)
=1/(3n+1)+1/(3n+2)-2/(3n+3)>0
所以Dn+1>Dn即Dn递增,所以D1=B3-B1=1/2+1/3=5/6最小
对任意n∈N+且n≥2都有B3n-Bn>m/20成立
所以5/6>m/20即m<50/3所以m最大为16
追问
第二问方法我懂了,但n≥2,最小值不是B3-B1
追答
n≥2,最小值是D2没注意看范围,不好意思
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询