高中数学-----------------数列与不等式结合的题目

数列{an}满足A1=1/2,A(n+1)=1/(2-An)(1)求an通项公式(2)若bn=1/an-1,{bn}的前n次和为Bn,若存在整数m,对任意n∈N+且n≥2... 数列{an}满足A1=1/2, A(n+1)=1/(2-An)
(1)求an通项公式
(2)若bn=1/an-1,{bn}的前n次和为Bn,若存在整数m,对任意n∈N+且n≥2都有B3n-Bn>m/20成立,求m的最大值。
(3)求证:Σ[1-ai/a(i+1)][1/√a(i+1)]<2(√2-1)(Σ上面是n,下面是i=1)
------------------------------------------------------------
答案:
(2)m最大值为18
(1),(3)是证明
打错了------------------第一问的答案是an=n/(n+1)
展开
chenlijian0158
2012-05-05 · TA获得超过520个赞
知道小有建树答主
回答量:247
采纳率:100%
帮助的人:211万
展开全部
A(n+1)=1/(2-An)可以用特征根发求通项公式,实在不会的话就用数学归纳法。
本题对应的特征方程为x(2-x)=1所以x=1
所以an=1+1/Cn其中Cn=-2-(n-1)=-n-1所以an=n/(n+1)

bn=1/n第二问比较简单
设Dn=B3n-Bn=1/(n+1)+1/(n+2)+1/(n+3)+·····+1/(n+2n)
所以Dn+1=B3(n+1)-Bn+1=1/(n+2)+1/(n+3)+·····+1/(n+1+2n+2)
所以Dn+1-Dn=1/(n+1+2n)+1/(n+1+2n+1)+1/(n+1+2n+2)-1/(n+1)
=1/(3n+1)+1/(3n+2)+1/(3n+3)-3/(3n+3)
=1/(3n+1)+1/(3n+2)-2/(3n+3)>0
所以Dn+1>Dn即Dn递增,所以D1=B3-B1=1/2+1/3=5/6最小
对任意n∈N+且n≥2都有B3n-Bn>m/20成立
所以5/6>m/20即m<50/3所以m最大为16
追问
第二问方法我懂了,但n≥2,最小值不是B3-B1
追答
n≥2,最小值是D2没注意看范围,不好意思
erqing091092
2012-05-06 · TA获得超过1239个赞
知道小有建树答主
回答量:882
采纳率:0%
帮助的人:345万
展开全部
1------------
A(n+1)
=(1-0*An) /(2- An)
=(2-1*A(n-1))/(3-2*A(n-1))
=(3-2*A(n-2))/(4-3*A(n-2))
=......
=(n-(n-1)*A1)/(n+1-n*A1)
=(n+1)/(2+n) ,,,,,(n>1)

==>An=n/(n+1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式