已知双曲线x^2/a^2-y^/b^2=1(b>a>0),O为坐标原点离心率e=2,点M(根号5,根号3...
已知双曲线x^2/a^2-y^/b^2=1(b>a>0),O为坐标原点离心率e=2,点M(根号5,根号3)在双曲线上,1,求双曲线的方程2,若直线L与双曲线交与P,Q两点...
已知双曲线x^2/a^2-y^/b^2=1(b>a>0),O为坐标原点离心率e=2,点M(根号5,根号3)在双曲线上,
1,求双曲线的方程
2,若直线L与双曲线交与P,Q两点,且OP向量乘OQ向量=0,求|OP|^2+|OQ|^2的最小值 主要第二问,我是在不会 展开
1,求双曲线的方程
2,若直线L与双曲线交与P,Q两点,且OP向量乘OQ向量=0,求|OP|^2+|OQ|^2的最小值 主要第二问,我是在不会 展开
2个回答
2012-05-09
展开全部
e=c/a=2
则b=根号(c^2-a^2)=根号3a
即曲线x^2/a^2-y^/3a^2=1带入M,得a=2 则曲线的方程
:x^2/4-y^/12=1
2
OP向量乘OQ向量=0,即OP⊥OQ则|OP|^2+|OQ|^2=|PQ|^2
说到这,当PQ都在同一侧的曲线上时才有最小值,则当OP=OQ时即有最小值,即直线PO,QO与x轴夹角均为45°
假设两点在右曲线,直线PO,QO与x轴夹角均为45°
求出一交点为(根号6,根号6)
则|PQ|^2最小值=24
则b=根号(c^2-a^2)=根号3a
即曲线x^2/a^2-y^/3a^2=1带入M,得a=2 则曲线的方程
:x^2/4-y^/12=1
2
OP向量乘OQ向量=0,即OP⊥OQ则|OP|^2+|OQ|^2=|PQ|^2
说到这,当PQ都在同一侧的曲线上时才有最小值,则当OP=OQ时即有最小值,即直线PO,QO与x轴夹角均为45°
假设两点在右曲线,直线PO,QO与x轴夹角均为45°
求出一交点为(根号6,根号6)
则|PQ|^2最小值=24
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询