如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接DG.(1)求证:△AED
2个回答
展开全部
解:①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②延长FB到G',取BG'=DG,连接CG',
易证出 △CDG≌△CBG'(SAS)
∴∠DCG=∠BCG',CG=CG'
∠DCB=∠GCB+∠BCG'=60°,
∴△CGG'为等边三角形
S四边形BCDG=S△CGG'=1/2×根3/2CG×CG=根3/4CG2.
③∵△AED≌△DFB,AF=2DF.
易证△DFG∽△DEA
∴FG:AE=DF:DA=1:3,
则 FG:BE=1:6=FG:BG,
即 BG=6GF.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②延长FB到G',取BG'=DG,连接CG',
易证出 △CDG≌△CBG'(SAS)
∴∠DCG=∠BCG',CG=CG'
∠DCB=∠GCB+∠BCG'=60°,
∴△CGG'为等边三角形
S四边形BCDG=S△CGG'=1/2×根3/2CG×CG=根3/4CG2.
③∵△AED≌△DFB,AF=2DF.
易证△DFG∽△DEA
∴FG:AE=DF:DA=1:3,
则 FG:BE=1:6=FG:BG,
即 BG=6GF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询