∫cost/(sint+cost)dt在0到π取积分
2个回答
展开全部
∫ cost/(sint + cost) dt
= (1/2)∫ [(cost + sint) + (cost - sint)]/(sint + cost) dt
= (1/2)∫ [1 + (cost - sint)/(sint + cost)] dt
= t/2 + (1/2)ln|sint + cost| + C
设ƒ(t) = cost/(sint + cost)
∫(0→π) ƒ(t) dt
= ∫(0→π/2) ƒ(t) dt + ∫(π/2→π) ƒ(t) dt
= ∫(0→π/2) ƒ(t) dt + ∫(π/2→3π/4) ƒ(t) dt + ∫(3π/4→π) ƒ(t) dt
= π/4 + ∞ + ∞
= ∞
这积分发散,断续点为x = 3π/4
= (1/2)∫ [(cost + sint) + (cost - sint)]/(sint + cost) dt
= (1/2)∫ [1 + (cost - sint)/(sint + cost)] dt
= t/2 + (1/2)ln|sint + cost| + C
设ƒ(t) = cost/(sint + cost)
∫(0→π) ƒ(t) dt
= ∫(0→π/2) ƒ(t) dt + ∫(π/2→π) ƒ(t) dt
= ∫(0→π/2) ƒ(t) dt + ∫(π/2→3π/4) ƒ(t) dt + ∫(3π/4→π) ƒ(t) dt
= π/4 + ∞ + ∞
= ∞
这积分发散,断续点为x = 3π/4
TableDI
2024-07-18 广告
2024-07-18 广告
仅需3步!不写公式自动完成Excel vlookup表格匹配!Excel在线免,vlookup工具,点击16步自动完成表格匹配,无需手写公式,免费使用!...
点击进入详情页
本回答由TableDI提供
展开全部
∫costdt/(sint+cost)
=∫cost(cost-sint)dt/(cost^2-sint^2)
=∫(cost^2-sintcost)dt/cos2t
=∫(1+cos2t)/2-sin2t /2dt/cos2t
=∫dt/2cos2t+t/2+(1/4)ln|cos2t|
=(1/4)ln|sec2t+tan2t|+t/2+(1/4)ln|cos2t|
∫[0,π]costdt/(sint+cost)
=(1/4)ln|sec2t+tan2t|+t/2+(1/4)ln|cos2t| |[0,π]
=(1/4)ln|sec2π|+π/2+(1/4)ln|cos2π|
-(1/4)ln|sec0|-(1/4)ln|cos0|
=π/2
=∫cost(cost-sint)dt/(cost^2-sint^2)
=∫(cost^2-sintcost)dt/cos2t
=∫(1+cos2t)/2-sin2t /2dt/cos2t
=∫dt/2cos2t+t/2+(1/4)ln|cos2t|
=(1/4)ln|sec2t+tan2t|+t/2+(1/4)ln|cos2t|
∫[0,π]costdt/(sint+cost)
=(1/4)ln|sec2t+tan2t|+t/2+(1/4)ln|cos2t| |[0,π]
=(1/4)ln|sec2π|+π/2+(1/4)ln|cos2π|
-(1/4)ln|sec0|-(1/4)ln|cos0|
=π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询