第一换元积分法是什么原理

名无不争3
2007-12-31 · TA获得超过134个赞
知道答主
回答量:153
采纳率:0%
帮助的人:0
展开全部
1. 换元积分法是借助复合函数求导法而得到.第一类换元积分法作变量代换,,第二类换元积分法作变量代换 .
2. 第一类换元积分法又称为“凑微分”法,要根据被积函数的特点找出,再将表示为,这一部分是不定积分中较难掌握的部分,也是非常重要的部分,应熟练掌握,结合导数和微分熟悉各种形式的“凑微分”法.

太难学了!!!!怎么办啊!!!
我现在还是一头雾水
robin_2006
推荐于2017-12-16 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8391万
展开全部
复合函数的微分运算的逆运算.

复合函数y=F[g(x)]由y=F(u),u=g(x)复合而成,F'(u)=f(u),所以,

dy=d(F[g(x)])=d(F(u))=F'(u)du=F'[g(x)]d(g(x))=f[g(x)]g'(x)dx

把运算过程反过来,则有

∫f[g(x)]g'(x)dx
=∫f[g(x)] dg(x) 令u=g(x)
=∫f(u)du
=F(u)+C 回代u=g(x)
=F[g(x)]+C
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sinxlg1
2007-12-23 · TA获得超过5215个赞
知道大有可为答主
回答量:1459
采纳率:86%
帮助的人:1041万
展开全部
又称“凑微分”法,原理如下:
如果积分f(x)dx中,设f(x)的原函数是F(x),f(x)dx可以凑成:F'(h(x))h'(x)dx形式,那么:
积分f(x)dx
=积分F'(h(x))h'(x)dx
=积分F'(h(x))dh(x)
=积分dF(h(x))
=F(h(x))+c
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式