如图,在△ABC中,AB=AC=2,∠B=40°,点D 50
如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时...
如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠EDC=——°,∠DEC=——°;点D从B向C运动时,∠BDA逐渐变——
(2)当DC等于多少时,△ABD全等于△DCE,请说明理由。
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数。若不可以,请说明理由。 展开
(1)当∠BDA=115°时,∠EDC=——°,∠DEC=——°;点D从B向C运动时,∠BDA逐渐变——
(2)当DC等于多少时,△ABD全等于△DCE,请说明理由。
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数。若不可以,请说明理由。 展开
6个回答
展开全部
如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠EDC=25°,∠DEC=115°;点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.
(1)根据∠BDA=115°以及∠ADE=40°,即可得出∠EDC=180°-∠ADB-∠ADE,进而求出∠DEC的度数,
(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE,
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
解答:解:(1)∠EDC=180°-∠ADB-∠ADE=180°-115°-40°=25°,
∠DEC=180°-∠EDC-∠C=180°-40°-25°=115°,
小;
(2)当DC=2时,△ABD≌△DCE,
理由:∵∠C=40°,
∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠ADB=∠DEC,
又∵AB=DC=2,
∴△ABD≌△DCE(AAS),
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
(1)当∠BDA=115°时,∠EDC=25°,∠DEC=115°;点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.
(1)根据∠BDA=115°以及∠ADE=40°,即可得出∠EDC=180°-∠ADB-∠ADE,进而求出∠DEC的度数,
(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE,
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
解答:解:(1)∠EDC=180°-∠ADB-∠ADE=180°-115°-40°=25°,
∠DEC=180°-∠EDC-∠C=180°-40°-25°=115°,
小;
(2)当DC=2时,△ABD≌△DCE,
理由:∵∠C=40°,
∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠ADB=∠DEC,
又∵AB=DC=2,
∴△ABD≌△DCE(AAS),
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
展开全部
解:(1)∠EDC=180°-∠ADB-∠ADE=180°-115°-40°=25°,
∠DEC=180°-∠EDC-∠C=180°-40°-25°=115°,
小;
(2)当DC=2时,△ABD≌△DCE,
理由:∵∠C=40°,
∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠ADB=∠DEC,
又∵AB=DC=2,
∴△ABD≌△DCE(AAS),
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
∠DEC=180°-∠EDC-∠C=180°-40°-25°=115°,
小;
(2)当DC=2时,△ABD≌△DCE,
理由:∵∠C=40°,
∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠ADB=∠DEC,
又∵AB=DC=2,
∴△ABD≌△DCE(AAS),
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、EDC=25 DEC=115 变小
2、用角边角相等证明,当AD=DE时,角BAD=EDC=30 BDA=DEC=110 则全等
则AB=DC=2
2、用角边角相等证明,当AD=DE时,角BAD=EDC=30 BDA=DEC=110 则全等
则AB=DC=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2)当DC等于BC/2.AD是等腰三角形底边中线.
(3)可.80,110.
(3)可.80,110.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
。。。这个。。。。(1)180-40-115,180-(180-40-115)-40,小
2,∠B=∠C,做两条高,两高之比等于AB/DC,每条高都能写成含斜边的数值。就能求了。
3,AD=AE,∠ADE=∠AED=40∠DEC=140,∠C=40,∠EDC=0,D与B重合,所以不可以
2,∠B=∠C,做两条高,两高之比等于AB/DC,每条高都能写成含斜边的数值。就能求了。
3,AD=AE,∠ADE=∠AED=40∠DEC=140,∠C=40,∠EDC=0,D与B重合,所以不可以
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-05-13
展开全部
safd
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询