
2个回答
展开全部
因为a b c是三角形的三条边,所以a+b+c大于0
a-b-c小于0
b-c-a小于0
c-a-b小于0
所以由此可得:根号(a+b+c)的平方-根号(a-b-c)的平方+根号(b-c-a)的平方-根号(c-a-b)的平方=a+b+c-[-(a-b-c)]+[-(b-c-a)]-[-(c-a-b)]=a+b+c+a-b-c-b+c+a+c-a-b
=2a+2c-2b
a-b-c小于0
b-c-a小于0
c-a-b小于0
所以由此可得:根号(a+b+c)的平方-根号(a-b-c)的平方+根号(b-c-a)的平方-根号(c-a-b)的平方=a+b+c-[-(a-b-c)]+[-(b-c-a)]-[-(c-a-b)]=a+b+c+a-b-c-b+c+a+c-a-b
=2a+2c-2b
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询