(2010?内江)如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.(1)请求出抛物线顶
(2010?内江)如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐...
(2010?内江)如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
展开
展开全部
(1)∵y=mx2-2mx-3m=m(x2-2x-3)=m(x-1)2-4m,
∴抛物线顶点M的坐标为(1,-4m);(2分)
∵抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,
∴当y=0时,mx2-2mx-3m=0,
∵m>0,
∴x2-2x-3=0;
解得x1=-1,x2=3,
∴A、B两点的坐标为(-1,0)、(3,0).(4分)
(2)当x=0时,y=-3m,
∴点C的坐标为(0,-3m).
∴S△ABC=
×|3?(?1)|×|?3m|=6|m|=6m.(5分)
过点M作MD⊥x轴于点D,则OD=1,BD=OB-OD=2,
MD=|-4m|=4m.
∴S△BCM=S△BDM+S梯形OCMD-S△OBC
=
BD?DM+
(OC+OM)?OD?
OB?OC
=
×2×4m+
(3m+4m)×1?
×3×3m
=3m.(7分)
∴S△BCM:S△ABC=1:2,(8分)
故答案为:
;
(3)存在使△BCM为直角三角形的抛物线;
过点C作CN⊥DM于点N,则△CMN为Rt△,CN=OD=1,DN=OC=3m,
∴MN=DM-DN=m.
∴CM2=CN2+MN2=1+m2;
在Rt△OBC中,BC2=OB2+OC2=9+9m2,
在Rt△BDM中,BM2=BD2+DM2=4+16m2;
①如果△BCM是Rt△,且∠BMC=90°,那么CM2+BM2=BC2,
即1+m2+4+16m2=9+9m2,
解得m=±
,
∵m>0,∴m=
.
∴存在抛物线y=
x2-
x-
∴抛物线顶点M的坐标为(1,-4m);(2分)
∵抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,
∴当y=0时,mx2-2mx-3m=0,
∵m>0,
∴x2-2x-3=0;
解得x1=-1,x2=3,
∴A、B两点的坐标为(-1,0)、(3,0).(4分)
(2)当x=0时,y=-3m,
∴点C的坐标为(0,-3m).
∴S△ABC=
1 |
2 |
过点M作MD⊥x轴于点D,则OD=1,BD=OB-OD=2,
MD=|-4m|=4m.
∴S△BCM=S△BDM+S梯形OCMD-S△OBC
=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
1 |
2 |
=3m.(7分)
∴S△BCM:S△ABC=1:2,(8分)
故答案为:
1 |
2 |
(3)存在使△BCM为直角三角形的抛物线;
过点C作CN⊥DM于点N,则△CMN为Rt△,CN=OD=1,DN=OC=3m,
∴MN=DM-DN=m.
∴CM2=CN2+MN2=1+m2;
在Rt△OBC中,BC2=OB2+OC2=9+9m2,
在Rt△BDM中,BM2=BD2+DM2=4+16m2;
①如果△BCM是Rt△,且∠BMC=90°,那么CM2+BM2=BC2,
即1+m2+4+16m2=9+9m2,
解得m=±
| ||
2 |
∵m>0,∴m=
| ||
2 |
∴存在抛物线y=
| ||
2 |
2 |
3
|