在△ABC中,角A,B,C所对的边分别为a,b,c,若3bcosA=ccosA+acosC,则tanA的值是
在△ABC中,角A,B,C所对的边分别为a,b,c,若3bcosA=ccosA+acosC,则tanA的值是...
在△ABC中,角A,B,C所对的边分别为a,b,c,若3bcosA=ccosA+acosC,则tanA的值是
展开
2个回答
2015-02-13 · 知道合伙人教育行家
关注
展开全部
3bcosA=ccosA+acosC
∵a/sinA=b/sinB=c/sinC
∴原式可化为:3sinBcosA=sinCcosA+sinAcosC = sin(A+C) = sin(π-B) = sinB
∵sinB≠0
∴两边同除以sinB得:3cosA=1
cosA=1/3>0,A为锐角
tanA = √(1-cos²A)/cosA = √(1-1/9)/(1/3) = 2√2
∵a/sinA=b/sinB=c/sinC
∴原式可化为:3sinBcosA=sinCcosA+sinAcosC = sin(A+C) = sin(π-B) = sinB
∵sinB≠0
∴两边同除以sinB得:3cosA=1
cosA=1/3>0,A为锐角
tanA = √(1-cos²A)/cosA = √(1-1/9)/(1/3) = 2√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询