(2013?长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形
(2013?长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形...
(2013?长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为______.
展开
展开全部
探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,
∵AE⊥CD,∠BCD=90°,
∴四边形AFCE为矩形,
∴∠FAE=90°,
∴∠FAB+∠BAE=90°,
∵∠EAD+∠BAE=90°,
∴∠FAB=∠EAD,
∵在△AFB和△AED中,
,
∴△AFB≌△AED(AAS),
∴AF=AE,
∴四边形AFCE为正方形,
∴S四边形ABCD=S正方形AFCE=AE2=102=100;
应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,
则∠ADF+∠ADC=180°,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADF,
∵在△ABE和△ADF中,
,
∴△ABE≌△ADF(AAS),
∴AF=AE=19,
∴S四边形ABCD=S△ABC+S△ACD
=
BC?AE+
CD?AF
=
×10×19+
×6×19
=95+57
=152.
故答案为:152.
∵AE⊥CD,∠BCD=90°,
∴四边形AFCE为矩形,
∴∠FAE=90°,
∴∠FAB+∠BAE=90°,
∵∠EAD+∠BAE=90°,
∴∠FAB=∠EAD,
∵在△AFB和△AED中,
|
∴△AFB≌△AED(AAS),
∴AF=AE,
∴四边形AFCE为正方形,
∴S四边形ABCD=S正方形AFCE=AE2=102=100;
应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,
则∠ADF+∠ADC=180°,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADF,
∵在△ABE和△ADF中,
|
∴△ABE≌△ADF(AAS),
∴AF=AE=19,
∴S四边形ABCD=S△ABC+S△ACD
=
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
=95+57
=152.
故答案为:152.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询